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Abstract

Ecosystems are commonly organized into trophic levels—organisms that occupy the

same level in a food chain (e.g., plants, herbivores, carnivores). A fundamental question

in theoretical ecology is how the interplay between trophic structure, diversity, and com-

petition shapes the properties of ecosystems. To address this problem, we analyze a

generalized Consumer Resource Model with three trophic levels using the zero-tempera-

ture cavity method and numerical simulations. We derive the corresponding mean-field

cavity equations and show that intra-trophic diversity gives rise to an effective “emergent

competition” term between species within a trophic level due to feedbacks mediated by

other trophic levels. This emergent competition gives rise to a crossover from a regime of

top-down control (populations are limited by predators) to a regime of bottom-up control

(populations are limited by primary producers) and is captured by a simple order parame-

ter related to the ratio of surviving species in different trophic levels. We show that our

theoretical results agree with empirical observations, suggesting that the theoretical

approach outlined here can be used to understand complex ecosystems with multiple tro-

phic levels.

Author summary

Ecosystems are commonly organized into trophic levels—organisms that occupy the same

level in a food chain (e.g., plants, herbivores, carnivores). In this study, we use methods

originating from spin glass physics to theoretically analyze the statistical properties of

large and diverse ecosystems with multiple trophic levels. Our analysis successfully quanti-

fies the strength of intra-level competitions and results in a simple criteria for determining

whether an ecosystem exhibits top-down control (e.g. herbivores populations are limited

by predators) or bottom-up control (e.g. herbivores populations are limited by the avail-

ability of plants). Somewhat surprisingly, we find that whether a system exhibits top-
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down or bottom-up control dependent solely on the ratio of surviving species at different

trophic levels.

1 Introduction

A defining feature of natural ecosystems is their immense complexity. This complexity is espe-

cially prominent in diverse ecosystems with many different types of interacting species and

resources. It is common to think about ecosystems in terms of energy flows: energy is har-

vested from the environment by primary producers (e.g., photosynthetic organisms) and then

flows through the ecosystem via the food chain [1]. Energy flows in ecosystems can be under-

stood by organizing species into trophic levels: sets of organisms that occupy the same level in

a food chain [2, 3]. A classic example is a food pyramid consisting of three trophic levels: pri-

mary producers (organisms that can directly harvest energy from the environment, e.g.,

plants), primary consumers (organisms that derive energy by consuming the primary produc-

ers, e.g., herbivores), and secondary consumers (organisms that derive energy from predation

of the primary consumers, e.g., carnivores).

Understanding the ecological consequences of such trophic structures remains an open prob-

lem in modern ecology [4]. To simplify the complexity of such systems, previous theoretical

studies have often ignored the effects of intra-trophic level diversity, focusing entirely on coarse-

grained energy flows between trophic levels. This approach has yielded numerous insights,

including the incorporation of top-down and bottom-up control, the role of vertical diversity,

and scaling laws for organism size and metabolism under different regimes [5–9]. However, the

use of coarse-grained trophic levels makes it difficult to understand the effects of species diver-

sity and competition on ecosystem structure and function. Given the importance of biodiversity

and competition as ecological drivers [10–12], there is a need for theoretical approaches that

allow for the simultaneous study of trophic structure, diversity, and competition.

Here, we address this shortcoming by building upon a series of recent works that utilize

ideas from statistical physics to understand the effects of competition and diversity in large

ecosystems with many species [13–23]. In particular, we focus on a three trophic level generali-

zation of the MacArthur Consumer Resource Model (MCRM), a prominent ecological model

for competition. First introduced by Levins and MacArthur, the MCRM considers an ecosys-

tem with two trophic levels corresponding to primary producers (resources) and primary con-

sumers [24–26]. In the MCRM, consumers are defined by a set of consumer preferences that

encode how likely each consumer is to consume each resource. Competition occurs when spe-

cies have similar consumer preferences and hence occupy similar niches [27].

Our model generalizes the MCRM in two ways. First, we introduce an additional trophic

level into the system. In addition to the primary producers, or resources, of the bottom level

and consumers of the top level, we introduce a middle level where species play the role of both

consumers and resources. Second, inspired by the success of “random ecosystems” in captur-

ing the properties of real ecosystems [20, 21, 23, 28, 29], we consider a large ecosystem with

many species at each trophic level where all consumer preferences and ecological parameters

are drawn from random distributions. The use of random parameters has a long history in the-

oretical ecology and allows us to model typical behaviors we expect to encounter [30].

To study this model, we make use of analytic calculations based on the zero-temperature

cavity method and numerical simulations. In particular, we derive analytic expressions for

steady-state distributions of species at all three trophic levels, allowing us to explore the
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interplay between trophic structure, diversity, and competition and construct ecological phase

diagrams for ecosystem behaviors.

2 Result

2.1 Multi-trophic consumer resource model

2.1.1 Theoretical setup. We begin by presenting a generalization of the MCRM to multi-

trophic systems. We consider an ecosystem consisting of three trophic levels: a bottom trophic

level consisting of MR species of primary producers (e.g., plants) whose abundances we denote

by RP (P = 1, . . ., MR), a middle trophic level consisting of MN species of primary consumers

(e.g., herbivores) with abundances Ni (i = 1, . . ., MN), and a top level consisting of MX second-

ary consumers (e.g. carnivores) Xα (α = 1, . . ., MX). We note that while we present results for

three levels, this model and the corresponding mean-field cavity solutions presented in the

next section can easily be generalized to an arbitrary number of trophic levels (see S1 Text).

The dynamics of the ecosystem are described by a set of non-linear differential equations of

the form

dXa

dt
¼ Xa ZX

X

j

dajNj � ua

2

4

3

5

dNi

dt
¼ Ni ZN

X

Q

ciQRQ � mi �

X

b

dbiXb

2

4

3

5

dRP

dt
¼ RP KP � RP �

X

j

cjPNj

2

4

3

5;

ð1Þ

where ciQ is a MN ×MR matrix of consumer preferences for the the MN primary consumers

and dβi is a MX ×MN matrix of consumer preferences for the MX secondary consumers, and

ηX, ηN 2 [0, 1] account for finite efficiency of biomass conversion. When ηX and ηN are close

to one, energy is very efficiently transferred across trophic levels. In contrast, when these values

are close to zero, energy cannot be efficiently harvested from lower trophic levels.

We also define the carrying capacity KP for each primary producer P, along with the death

rates mi for each primary consumer i and uα for each secondary consumer. These dynamics

share key assumptions with the original MCRM on how energy flows from the environment to

different species and how species interact with each other. The major difference between the two

models is the addition of the intermediate trophic level, Ni, where species act as both “resources”

to the secondary consumers above and “consumers” of the primary producers below. To provide

intuition, we will use the terms “carnivores”, “herbivores” and “plants” in later text to refer to

“secondary consumers”, “primary consumers” and “primary producers,” respectively.

In Fig 1(a), we depict an example of this model graphically with species organized into

three distinct trophic levels composed of carnivores, herbivores, and plants. At the bottom,

there is a constant flux of energy into the system from the environment. In the absence of her-

bivores, plants in the bottom level grow logistically to their carrying-capacity KP. Predation

reduces the resource abundances at the bottom, resulting in an upward flow of energy. Energy

returns to the environment through death, represented by death rates uα and mi.

In addition to energy flows, the ecosystem is structured by competition between species

through the consumer preference matrices dαj and ciP. As in the original MCRM, species

within a trophic level with similar consumer preferences compete more and consequently, can
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competitively exclude each other [24]. One qualitatively new feature of the multi-trophic

MCRM is that niches in the herbivore level are defined by both the consumer preferences ciP
for the species in the bottom level and the ability to avoid predation by carnivores through

their consumer preferences dαj. The consumer preferences ciP and dαj control both energy

flows between trophic levels and competition between species within a trophic level.

To proceed, we specify the free parameters cjP, dαj, KP, mi, and uα. Because we are interested

in the typical behaviors of large multi-trophic ecosystems (the thermodynamic limit, MR, MN,

MX� 1), we follow a rich tradition in theoretical ecology and statistical physics of drawing

parameters randomly from distributions [30, 31]. We consider the case where the consumer

preferences dia are drawn independently and identically with mean μd/MN and standard devia-

tion sd=
ffiffiffiffiffiffiffi
MN
p

. We parameterize the variation in dia in terms of the random variables γid so that

dai ¼
md

MN
þ sdgai

hgaii ¼ 0; hgaigbji ¼
dabdij

MN
:

ð2Þ

Fig 1. (a) Schematic of food web interaction with three-level trophic structure, colored corresponding to the model equation in (e). (b) Simulated

dynamics of a system with MX = 50 species of carnivores, MN = 56 herbivores and MR = 62 plants with k = 4, m = 1, u = 1, σc = σd = 0.5, μc = μd = 1, ηX =

0.8, ηN = 0.6, σk = σm = σu = 0.1. (c) Histograms of the steady-state distributions reached by simulated dynamics of 200 systems of the same condition in

(b) and the distributions predicted by our cavity solutions. Note that the peaks at zero correspond to delta functions for extinct species. For visual

clarity, they are not shown to full scale, but also agree with the cavity predictions (see S4 Fig). (d) Schematic of the coarse-grained view of the three-level

trophic structure, colored corresponding to equations in (f). (e) Equations of the three-level trophic structure model corresponding to (a). (f) Effective

mean-field (TAP) equations for steady-states have additional emergent competition and random variation terms proportional to DA
eff (A ¼ X;N;R)

and sB (B ¼ ueff ;meff ;Keff ), respectively. In 1(a), the icon of the wolf is adapted from “Creative-Tail-Animal-wolf” by Creative Tail licensed under CC

BY 4.0, and all other icons are adapted from cliparts from Openclipart licened under CC0 1.0 DEED.

https://doi.org/10.1371/journal.pcbi.1011675.g001
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Similarly, we draw the consumer preferences ciA independently and identically with

mean μc/MR and standard deviation sc=
ffiffiffiffiffiffiffi
MR
p

, parameterized in terms of the random vari-

ables �jP,

ciP ¼
mc

MR
þ sc�iP

h�iPi ¼ 0; h�iP�jQi ¼
dijdPQ

MR
:

ð3Þ

For convenience, we choose to scale the means and variances of the consumer prefer-

ences with the number of species, 1/MN or 1/MR. We note that this does not affect the gener-

ality of our results, but greatly simplifies the mathematical treatment in the thermodynamic

limit.

With the knowledge that niches overlaps of consumers depend on the ratio of the mean

versus standard deviation of consumer preferences [26], we fix μc = 1 and μd = 1. In most

simulations we also choose to draw the consumer preferences from Gaussian distributions.

However, we note that our results also generalize to other distributions that obey the above

statistical properties such as the uniform distribution where coefficients are strictly positive

(see S5 Fig).

Finally, we choose the parameters uα, mi, and KP to be independent Gaussian random vari-

ables with means u, m, and k and standard deviations σu, σm, and σK, respectively. We also fix

ηN = ηX = 1, σK = 0.1, σu = 0.1, and σm = 0.1.

In Fig 1(b), we depict the typical dynamical evolution of such a system, where the biomass

of each species fluctuates for a finite time before reaching equilibrium. While the dynamics of

consumer-resource models can display rich behavior, for instance chaos and limit cycles when

consumer-resource interactions are asymmetric (non-reciprocal) [32], we choose to focus on

the case where the interactions are symmetric. In the physical regime where the mean values

of each parameter and the initial biomass of each species is positive, we have found that our

numerical simulations always converge to a unique globally stable steady-state for the ecologi-

cal dynamics. While we currently lack a rigorous proof, we suspect that this reflects the fact

that the the multi-trophic consumer resource model possesses a Lyapunov function similar to

the two trophic layer system [33, 34].

2.1.2 Derivation of cavity solutions. In a very large ecosystem, understanding the

detailed behaviors of each species is not possible. For this reason, we focus on developing a sta-

tistical description of the ecological dynamics in steady-state. This is made possible by the

observation that the each species interacts with many other species in the ecosystem, allowing

us to characterize the effects of interactions using a mean-field theory. This philosophy origi-

nates from the statistical physics of spin glasses and has more recently been imported into the

study of ecological systems [15, 26, 35–37].

To derive the mean-field cavity equations for the steady-state behavior, we focus on the

thermodynamic limit, MR, MN, MX!1, while holding the ratios of species fixed, r1 = MX/

MN and r2 = MN/MR. The key idea of the zero-temperature cavity method is to relate properties

of an ecosystem of size (MX, MN, MR) to an ecosystem with size (MX + 1, MN + 1, MR + 1)

where a new species is added at each trophic level. For large ecosystems, the effects of the new

species are small enough to capture with perturbation theory, allowing us to derive self-consis-

tent equations. On a technical level, we assume that our ecosystem is self-averaging and replica

symmetric [31].
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Under these assumptions, we find that “typical” species at each trophic level, represented by

the random variables X, N, and R, follow truncated Gaussian distributions, given by

X ¼ max 0;
gX
eff þ sgXeff

zx
DX

eff

" !

N ¼ max 0;
gN
eff þ sgNeff

zN
DN

eff

" !

R ¼ max 0;
gR
eff þ sgReff

zR
DR

eff

" !

;

ð4Þ

where zX, zN, zR are independent Gaussian random variables with zero mean and unit variance

and the effective parameters are given by the expressions

gX
eff ¼ � uþ ZXmdhNi

gN
eff ¼ � m � r1mdhXi þ ZNmchRi

gR
eff ¼ K � mcr2hNi

s2

gXeff
¼ Z2

Xs
2
dhN

2i þ s2
u

s2

gNeff
¼ Z2

Ns
2
c hR

2i þ s2
dr1hX2i þ s2

m

s2

gReff
¼ s2

k þ s
2
c r2hN2i

DX
eff ¼ � ZXs

2
dn

DN
eff ¼ ZNs

2
ck � ZXr1s

2
dw

DR
eff ¼ 1 � ZNr2s

2
cn:

ð5Þ

We use the notation h.i to denote averages over the distributions in Eq (4). With this nota-

tion, we define the the mean abundance of species at each trophic level, hRi, hNi, and hXi, the

second moments of the species abundances, hR2i, hN2i, and hX2i, and the mean susceptibility

of each trophic level biomass with respect to the change of direct energy flow in or out from

the environment at that level, w ¼ h@X
@ui, n ¼ h

@N
@mi, and k ¼ h@R

@Ki.

In S1 Text, we provide a detailed explanation of how Eqs (4) and (5) can be used to derive a

set of self-consistent cavity equations to solve for the means and second moments of the abun-

dances, the susceptibilities, and the fraction of surviving species at each trophic level. Fig 1(c)

shows a comparison between the predictions of the steady-state distributions of R, N, and X
and direct numerical simulation of Eq (1). We can see that there is remarkable agreement with

simulations results. This suggests that the cavity method accurately captures the large scale

properties of multi-trophic ecosystems.

Our calculations are exact in the thermodynamic limit where there are infinite number of

species in the regional pool at each trophic level. To understand the finite size corrections, we

performed numerical simulations for ecosystems of different sizes. As can be seen in S4 Fig,

our analytic predictions agree well with numerics even for modest size ecosystems with of

order 20 species.
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2.2 Emergent competition

2.2.1 Effective coarse-grained picture. The cavity solutions from the previous section

allow us to calculate the biomass of species in each trophic level. A key feature of these equa-

tions is that the effect of species competition is summarized by self-consistent Thouless-

Anderson-Palmer (TAP) corrections proportional to the parameters DX
eff , D

R
eff , and DN

eff [see Eq

(4)]. We now show that these three parameters have a natural interpretations as encoding the

“emergent competition” between species within each trophic level mediated by interactions

with other trophic levels.

To see this, we note that Eq (4) can also be rearranged to give effective steady-state equa-

tions for a typical species at each level,

0 ¼
dX
dt
¼ X gX

eff þ sgXeff
zx � DX

eff X
h i

0 ¼
dN
dt
¼ N gN

eff þ sgNeff
zN � DN

effN
h i

0 ¼
dR
dt
¼ R gR

eff þ sgReff
zR � DR

eff R
h i

:

ð6Þ

We emphasize that these equations are only valid at steady-state and capturing the actual

coarse-grained dynamics would involve solving for the full dynamical mean-field theory equa-

tions. However, rewriting the steady-state solutions in this form clarifies the meaning of DX
eff ,

DN
eff , and DR

eff . Species at each trophic level have an effective description in terms of a logistic

growth equation, with the parameters DX
eff , D

N
eff , and DR

eff controlling how much individuals

within each trophic level compete with each other. In addition, Eq (6) demonstrates that the

species within each trophic level can be thought of as having effective carrying capacities

drawn from Gaussian distributions with means gX
eff , g

N
eff , and gR

eff , and standard deviations sgXeff
,

sgNeff
, and sgReff

, respectively. This coarse-grained view of the resulting ecological dynamics is

illustrated in Fig 1(d) with the correspondence between terms in the original and coarse-

grained steady state equations depicted in Fig 1(e) and 1(f).

2.2.2 Relation to species packing. To better understand the origins of this emergent com-

petition, we relate DX
eff , D

N
eff , and DR

eff to the number of surviving species and the species packing

fractions. One of the key results of niche theory is the competition-exclusion principle which

states that the number of species that can be packed into an ecosystem is bounded by the num-

ber of realized (available) niches [24, 38]. In Consumer Resource Models (CRMs), the number

of realized niches is set by the number of surviving species at each trophic level. For the top

trophic level, the competitive exclusion principle states that the number of surviving carni-

vores M∗
X must be smaller than the number of surviving herbivores M∗

N ,

M∗
X � M∗

N : ð7Þ

For herbivores which reside in the middle trophic levels, niches are defined by both the abil-

ity to consume plants in the bottom trophic level and the ability to avoid predation by carnivores

in the top trophic level. For this reason, competitive exclusion on herbivores takes the form

M∗
N � M∗

R þM∗
X; ð8Þ

where M∗
R is the number of plants that survive at steady-states. In other words, for herbivores

there are M∗
R þM∗

X potential realized niches of which M∗
N are filled.
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The cavity equations derived from Eq (4) naturally relate species packing fractions to the

effective competition coefficients DX
eff , D

N
eff , and DR

eff in Eq (5). Before proceeding, it is helpful to

define the ratio

f ¼
M∗

R þM∗
X � M∗

N

M∗
N � M∗

X

¼
#of unfilled realized niches in middle trophic level
#of unfilled realized niches in top trophic level

ð9Þ

and the ratio �N ¼ M∗
N=MN , the fraction of species in the regional species pool that survive in

the middle level. Using these ratio, in the S1 Text, we show that the effective competition coef-

ficients can be written

DX
eff ¼

ZXs
2
d

ZNs
2
c r2

1

f

DN
eff ¼ ZN�Ns

2
c r2f

DR
eff ¼ 1þ

1

f
:

ð10Þ

These expressions show that there is a direct relationship between the amount of emergent

competition at each trophic level and the number of occupied niches (species packing proper-

ties). The effective competition coefficient for herbivores, DN
eff , decreases with the number of

unoccupied niches in the top trophic level, and shows a non-monotonic dependence on the

number of species in the middle level. Moreover, direct examination of the expressions in Eq

(10) shows that the amount of competition in the top and bottom levels is positively correlated,

in agreement with the well-established ecological intuition for trophic levels separated by an

odd number of levels [39–41].

To better understand these expressions, we used the cavity equations to numerically explore

how emergent competition parameters at each trophic level depend on the diversity of the

regional species pool (as measured by s2
c and s2

d) and environmental parameters (k, u, r1, and

r2). We summarize these results in Table 1 and S2 and S3 Figs. One consistent prediction of

our model is that the effective competition in each level always decreases with the size of the

regional species pool of that level. This effect has been previously discussed in the ecological lit-

erature under the names “sampling effect” and “variance in edibility” [39, 42–44]. We also find

that in almost all cases, the effective competition coefficients change monotonically as model

Table 1. Effect of changing model parameters on emergent competition and the relative strength of top-down versus bottom-up control. The last column refers to

related hypothesis or observations summarized in Table 2. The symbols indicate increase ", or decrease #. The table is also valid with symbols flipped (" replaced by #, and

vice versa). See S2 and S3 Figs for corresponding numerical simulations.

Label Change to ecosystem " Parameter change DX
eff DN

eff DR
eff DN;top

eff

DN;top
eff þDN;bottom

eff

1 carnivore species richness r1 " # " # "

2 herbivore species richness r1 # r2 " " # " #

3 plant species richness r2 # mostly # " # slightly " or #

4 carnivore preference variance σd " " mostly " mostly # mostly "

5 herbivore preference variance σc " # " mostly " #

6 death rate of carnivore u " " # " #

7 energy influx to plant k " ", or #, or " then # ", or # then " #, or " then # "

https://doi.org/10.1371/journal.pcbi.1011675.t001
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parameters are varied. One notable exception to this is the effect of changing the amount of

energy supplied to the ecosystem as measured by the average carrying capacity k of plants

(resources) in the bottom level. We find that often the amount of emergent competition in the

bottom level, DR
eff , first increases with k then decreases, and this non-monotonic behavior

propagates to DN
eff and DX

eff . Finally, we observe the that DX
eff , D

N
eff , and DR

eff generally increase

with σc and σd.

2.3 Order parameters for top-down vs bottom-up control

Ecosystems are often robust to certain classes of perturbations while being fragile to others.

For instance, ocean ecosystems are known to react much more drastically to loss of nutrients

and sunlight than loss of big predator fishes [45]. Motivated by observations such as these,

ecologists often classify ecosystems into two broad categories depending on the type of pertur-

bations they are most sensitive to: ecosystems with bottom-up control and ecosystems with

top-down control [Fig 2(a) and 2(b), respectively]. Bottom-up control describes ecosystems

that are susceptible to perturbations of the bottom trophic level, while top-down control

describes ecosystems that are susceptible to perturbation of the top trophic level. In S1 Text,

we present a simple toy-model that illustrates these concepts.

For example, Fig 2(c) shows simulations from an ecosystem that exhibits bottom-up con-

trol. Changing the average carrying capacity k of plants in the bottom level increases the bio-

mass of herbivores and predators at higher trophic levels. In contrast, the middle and bottom

Fig 2. (a) Bottom-up control. Increasing the total energy energy influx k to primary producers in the bottom trophic level increases the average

biomass hNi of herbivores in the middle trophic level. (b) Top-down control. Increasing the death rate u of predators in the top trophic level increases

the biomass of the middle trophic level. (c) Average biomass at each trophic level obtained from cavity solutions as a function of u with k = 1, r1 = 0.2, r2

= 1.2, σc = 0.5, σd = 0.5, (left) and as a function of k with u = 3 (right). (d) Same as (c) except r1 = 1.3, r2 = 0.3. This difference in parameters is an

example of the herbivore species richness increase described in Table I. In 2(a)-(b), the icon of the wolf is adapted from “Creative-Tail-Animal-wolf” by

Creative Tail licensed under CC BY 4.0, and all other icons are adapted from cliparts from Openclipart licened under CC0 1.0 DEED.

https://doi.org/10.1371/journal.pcbi.1011675.g002
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trophic levels are relatively insensitive to changes in the average death rate u of predators in

the top trophic level. Fig 2(d) shows a simulation of an ecosystem that exhibits top-down con-

trol. Increasing the death rate of predators results in increased populations of herbivores (mid-

dle level) but decreased populations of predators (top level) and plants (bottom levels). This

alternating behavior across trophic levels is characteristic of ecosystems with top-down con-

trol. In contrast, the biomass in the middle is largely insensitive to changes in the carrying

capacity k of plants in the bottom level.

2.3.1 Measuring top-down versus bottom-up control. Historically, it was assumed that

ecosystems could not simultaneously exhibit both top-down and bottom-up control [40, 46,

47]. However, recent evidence—such as the impact of overfishing on aquatic ecosystems—has

overturned this view leading to a consensus that most ecosystems are impacted by both types

of control and that their relative importance can shift over time [8, 48–51]. Building on these

ideas, recent theoretical works suggest that ecosystems can shift between bottom-up and top-

down control dominated regimes as one varies model parameters [9, 52–54]. Here, we revisit

and extend these works using CRMs and our cavity solution to investigate the effects of species

diversity and other environmental factors on top-down versus bottom-up control.

One important challenge we must overcome is the lack of a consensus in the ecology litera-

ture on how to quantify bottom-up versus top-down control in an ecosystem. Empirical stud-

ies often use the structure of correlations in time series of species abundances across trophic

levels [48, 49, 51]. An alternative experimental approach is based on the ability to create small

ecosystems with slightly different environments and/or compositions of predators in the top

trophic level [43, 53, 55]. Unfortunately, conclusions between these two frameworks often do

not agree with each other [56]. For this reason, it is necessary to revisit the problem of quanti-

fying bottom-up and top-down control.

One common proposal for characterizing the response of ecosystems to perturbations in

both empirical and theoretical studies is looking at the biomass distribution of different tro-

phic levels. It has been argued that in a system with bottom-up control, we should expect the

total biomass of the bottom trophic level to be larger than the total biomass of the top trophic

level, MRhRi>MXhXi In contrast, in a system with top-down control, we expect the opposite,

MXhXi>MRhRi. Other existing theoretical works make use of derivatives to measure the

results of various perturbations [8]. The most direct quantities we can look at are the deriva-

tives
dhNi
dk and

dhNi
du that capture the change in the average biomass hNi of species in the middle

trophic level in response to changes in the average carrying capacity k of plants (bottom tro-

phic level) and changes in the average death rate u of carnivores (top trophic level). An intui-

tive measurement to compare these two quantities may be the ratio
dhNi
dk =

dhNi
du 2 ½0;1Þ, but

converting it to fraction
dhNi
dk =

dhNi
du þ

dhNi
dk

� �
2 ½0; 1� gives us a more well-behaved order

parameter.

2.3.2 Cavity-inspired order parameters. Here, we use our cavity solution to the multi-

trophic MCRM to propose two informative and intuitive order parameters to assess whether

an ecosystem has top-down or bottom-up control. We then show that they qualitatively agree

with each other and the definitions based on derivatives discussed above (see Fig 3).

Biomass-based order parameter. To create our first order parameter, we rewrite the form

of the effective growth rate for the biomass in the middle trophic level [Eq (5)] as

gN
eff ¼ � mþ gN;top

eff þ gN;bottom
eff

gN;top
eff ¼ � r1mdhXi; gN;bottom

eff ¼ ZNmchRi
ð11Þ
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Each of the three terms in gN
eff captures distinct ecological processes of herbivores in the

middle level: (i) the first term proportional to m is the intrinsic death rate, (ii) the middle term,

gN;top
eff , captures the effect of predation due to carnivores in the top trophic level, and (iii) the

third term, gN;bottom
eff , measures the consumption of plants in the bottom trophic level. Based on

this interpretation, we propose the following ratio as a natural measure of top-down versus

bottom-up control:

�
�
�
�
�

gN;top
eff

gN;top
eff þ gN;bottom

eff

�
�
�
�
�
¼ r1

mdhXi
mdhXi þ ZNmchRi

: ð12Þ

This ratio measures the relative contributions of the top and bottom trophic levels on the

growth rate of species in the middle level. Notice that in addition to the biomass, this definition

also accounts for the strength of competition between species via μc and μd, along with differ-

ences in the regional species pool sizes via the extra factor r1 = MX/MN.

Species packing-based order parameter. We also construct an order parameter for top-

down versus bottom-up control based on the relative contributions of the top and bottom tro-

phic levels to the emergent competition coefficient of the middle level, DN
eff . Using the

Fig 3. (a) The emergent competition coefficient for the middle level, DN
eff , can be written as the sum of two terms

resulting from feedbacks from the top trophic level, DN
top, and the bottom trophic level, DN

bottom. The order parameter

DN
top=ðDN

top þ DN
bottomÞ quantifies the sensitivity to top-down versus bottom-up control. (b) Comparison of three order

parameters discussed in the main text for measuring top-down versus bottom-up control:
dhNi
dk =

dhNi
dk

dhNi
du

� �
,

gN;top
eff =ðgN;top

eff þ gN;bottom
eff Þ, DN;top

eff =ðDN;top
eff þ DN;bottom

eff Þ. Each point corresponds to an ecosystem with different choices of k,

u, r1, and r2. In 3(a), the icon of the wolf is adapted from “Creative-Tail-Animal-wolf” by Creative Tail licensed under

CC BY 4.0, and all other icons are adapted from cliparts from Openclipart licened under CC0 1.0 DEED.

https://doi.org/10.1371/journal.pcbi.1011675.g003
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definition in Eq (5), we rewrite this coefficient as

DN
eff ¼ DN;top

eff þ DN;bottom
eff

DN;top
eff ¼ ZXr1s

2
dw; DN;bottom

eff ¼ ZNs
2
ck

ð13Þ

where DN;top
eff and DN;bottom

eff capture feedbacks from the top and bottom trophic levels, respec-

tively, onto the middle level. Based on this, we define the corresponding order parameter as

DN;top
eff

DN;top
eff þ DN;bottom

eff

¼
� ZXr1s

2
dw

ZNs
2
ck � ZXr1s

2
dw
¼

M∗
X

M∗
N

; ð14Þ

where in the second equality we have used the cavity solutions to relate the susceptibilities to

species packing fractions (see S1 Text). Since competition exclusion leads to M∗
X < M∗

N , this

order parameter corresponds to simply the fraction of realized niches that are filled in the top

level. By construction, if DN;top
eff =DN;top

eff þ DN;bottom
eff > 0:5, then an ecosystem exhibits more top-

down control than bottom-up control, while DN;top
eff =DN;top

eff þ DN;bottom
eff < 0:5 indicates the oppo-

site is true.

Finally, we note that somewhat surprisingly this order parameter does not explicitly depend

on the biomass conversion efficiencies ηX and ηN. For this reason, within our model, the effect

of imperfect energy conversion manifests itself only through species packing fractions.

2.3.3 Order parameters are consistent with ecological intuitions. To better understand

if these species-packing order parameters capture traditional intuitions about top-down versus

bottom-up control, we compare DN;top
eff =ðDN;top

eff þ DN;bottom
eff Þ, jgN;top

eff =ðgN;top
eff þ gN;bottom

eff Þj, and

dhNi
dk =

dhNi
dk þ

dhNi
du

� �
to each other for ecosystems where we varied the model parameters k, u, r1,

and r2. The results are shown in Fig 3. Notice that all three quantities are highly correlated,

especially at the two extreme ends. This suggests that the order parameter DN;top
eff =ðDN;top

eff þ

DN;bottom
eff Þ is an especially useful tool to infer whether an ecosystems is more susceptible to bot-

tom-up or top-down control, as it requires us to simply count the number of surviving species

in the top and middle trophic levels. If we have more occupied niches in the top level than

unoccupied niches, M∗
X=M

∗
N > 0:5, the ecosystem is more susceptible top-down control. If the

opposite is true M∗
X=M

∗
N < 0:5, then the ecosystem is more susceptible to bottom-up control.

2.4 Phase diagram changes with diversity

Having established that DN;top
eff =ðDN;top

eff þ DN;bottom
eff Þ is a good order parameter for assessing the

relative importance of bottom-up and top-down control, we now use this quantity to construct

phase diagrams. One important ecological parameter of interest is the total energy entering the

ecosystem. In our model, this is controlled by the average carrying capacity k of plants at the

bottom trophic level. Another ecologically important parameter is the predator death rate u
which controls the biomass in the top trophic level. The number and diversity of species in the

ecosystem is set by r1 = MX/MN and r2 = MN/MR, which determine the relative sizes of the

regional species pools at each trophic level, and σc and σd, which control the trait diversity via

the standard deviation of consumer preferences. Fig 4(a) shows the dependence of

DN;top
eff =ðDN;top

eff þ DN;bottom
eff Þ on k, u, r1, and r2, while the phase diagrams in Fig 4(b) explore the

dependence of DN;top
eff =ðDN;top

eff þ DN;bottom
eff Þ on σc and σd.

Notice that DN;top
eff =ðDN;top

eff þ DN;bottom
eff Þ always increases with k and decreases with u. These

trends agrees with our expectation that ecosystems are more likely to exhibit top-down
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(bottom-up) control when they are limited by the top (bottom) trophic level. A larger k
reduces the survival stress on species in the middle level from food limitations, decreasing the

importance of bottom-up control. Analogously, a larger u reduces the stress from predators,

decreasing the importance of top-down control.

The amount of top-down control DN;top
eff =ðDN;top

eff þ DN;bottom
eff Þ also increases with r1 and

decreases with r2. This observation is consistent with what is known in the ecological literature

as the “sampling effect”, where larger regional species pool size leads to a higher fitness of sur-

viving species [42, 44]. A smaller r1 and larger r2 correspond to increasing the size of the

regional species pool of the middle trophic level relative to the top level or bottom level, respec-

tively. This increases the odds that herbivores can cope with the survival stress from predators

and/or more efficiently consume plants.

In Fig 4(b), we also show how DN;top
eff =ðDN;top

eff þ DN;bottom
eff Þ depends on the trait diversity via σc

and σd. Notice that the amount of top-down control decreases as the diversity of the herbivores

increases via σc, while it increases as predators in the top trophic level become more diverse via

σd. One notable exception is a small region in phase space with large k, small u, small r1, and

small σc, where DN;top
eff =ðDN;top

eff þ DN;bottom
eff Þ decreases with σd. A similar dependence on σd is

observed for DR
eff , suggesting that this idiosyncratic behavior may be mediated by a complex

feedback involving both carnivores and plants.

2.5 Predictions, proposed experiments, and comparison to ecological

literature

Tables 1 and 2 compare the prediction of our model for emergent ecosystem properties to the

ecological literature. We primarily focus on predictions concerning how the effective competi-

tion strength at each trophic level (DX
eff ;D

N
eff ;D

R
eff ) and the relative strength of top-down versus

bottom-up control (DN;top
eff =ðDN;top

eff þ DN;bottom
eff Þ) vary with the number of species (r1, r2), species

diversity (σc, σd) and environmental parameters (k, u). In particular, Table 2 summarizes the

predictions from our model in simple terms and presents observations/hypothesis from the

ecological literature consistent with our model predictions. Overall, it is quite striking how

Fig 4. (a) as a function of energy influx to primary producers k and death rate of carnivores u for four different ratios of regional species pool, r1, r2 2

{0.4, 1.2}, indicated by the pie chart, with σc = 0.5 and σd = 0.5, and (b) as a function of the species trait diversity, σd and σc, for four different ratios of

regional species pools with environmental parameters k = 4.2, u = 2.6 and k = 4.2, u = 1.

https://doi.org/10.1371/journal.pcbi.1011675.g004
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many different qualitative observations/hypothesis are reproduced by our generalized MCRM

with three trophic levels.

The predictions of our models can also be directly tested using current experimental tech-

niques. One prediction of our theory is that whether a three trophic level ecosystem exhibits

top-down or bottom-up control can be determined by counting the number of species in the

middle and top trophic levels. In principle, this can be done using perturbative experiments on

synthetic microcosms under different conditions [54]. Another interesting direction for test-

ing our predictions is to use existing food web data, focusing on the number of coexisting spe-

cies and biomass at each trophic level. One potential setting for doing this is to compare

properties of aquatic and terrestrial food webs since aquatic ecosystems are generically thought

to be more susceptible to top-down control than terrestrial ecosystems [68, 69]. It may be also

interesting to fit the model to actual ecosystems, for instance by making use of rank-abun-

dance curves data for real systems to fix the biomass distributions of the model.

3 Method

3.1 Cavity derivations

3.1.1 Three-level consumer resource model. The derivation in this section follows closely

with the derivation in Ref. [26]. To derive the cavity solutions for the steady-state behavior of

our three-level Consumer Resource Model, we focus on the limit MR, MN, MX!1, while

holding the ratios of species r1 = MX/MN and r2 = MN/MR fixed. The key idea of the cavity

method is to relate properties of an ecosystem of size (MX, MN, MR) to an ecosystem with size

(MX + 1, MN + 1, MR + 1) where a new species has been added at each trophic level, while keep-

ing all other parameters the same. We start by evaluating Eq (1) at steady-state and adding one

Table 2. Existing observations and hypothesis in trophic ecology that relates to the model behavior in Fig 4 and S2

and S3 Figs. The first column refers to the related model behavior summarized in Table 1.

Model

behavior

Observation/hypothesis References

1 Increased species richeness in a trophic level lead to higher biomass and resource

comsumption in its level

[42, 57, 58]

2, 5 Herbivore diversity may increase bottom-up control and decrease top-down control

through complementarity

[45, 56]

2, 3 Increasing prey richness increase the chance of resistance to predator (variance in

edibility hypothesis)

[43]

1, 3 Ecosystem are much more sensitive to loss of predators diversity than plants diversity [55, 59]

4, 5 Increasing consumer generalism (horizontal niche breadth) reduces or alters the

impact of consumer richness on prey biomass

[60, 61]

7 Increasing the resources to a system can be destabilizing (paradox of enrichment). [62]

7 Bottom-up cascade: An increase in primary producer will be passed on to the

predators in a three-level food chain.

[63]

3 Increased plant diversity results in reduced herbivory [64]

1 Increased predator diversity results in reduced herbivory [65]

6 Removing top predators by hunting, fishing and whaling has lead to flourishing

mesopredators

[66]

1, 2, 6 Top-down cascade: Removal of predators from a food chain with odd number of levels

reduces plant biomass, vice versa for even number

[40, 41]

7 Bottom-up effect becomes weaker when nutrient is abundant [48, 67]

https://doi.org/10.1371/journal.pcbi.1011675.t002
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new species at each level represented by an index of 0,

0 ¼
dXa

dt
¼ Xa

"

mdhNi þ ZXsd

X

j

gajNj þ ZXsdga0N0 � ua

#

0 ¼
dNi

dt
¼

Ni

"

mchRi þ ZNsc

X

Q

�iQRQ þ ZNsc�i0R0 � mi � mdr1hXi � sd

X

b

gbiXb � sdg0iX0

#

0 ¼
dRP

dt
¼ RP

"

KP � RP � mcr2hNi � sc

X

j

�jPNj � sc�0PN0

#

:

ð15Þ

We have also substituted the decomposition of the consumer preferences into their mean

and varying parts according to Eqs (2) and (3). Note that all sums in this derivation are

assumed to start at index 1 unless otherwise specified. Furthemore, we have defined the mean

species abundances

hXi ¼
1

MX

XMX

b¼0

Xb; hNi ¼
1

MN

XMN

j¼0

Nj; ; hRi ¼
1

MR

XMR

Q¼0

RQ: ð16Þ

We also introduce a new steady-state equation for each of the new species,

0 ¼
dX0

dt
¼ X0

"

mdhNi þ ZXsd

X

j

g0jNj þ ZXsdg00N0 � u0

#

0 ¼
dN0

dt
¼

N0

"

mchRi þ ZNsc

X

Q

�0QRQ þ ZNsc�00R0 � m0 � mdr1hXi � sd

X

b

gb0Xb � sdg00X0

#

0 ¼
dR0

dt
¼ R0

"

K0 � R0 � mcr2hNi � sc

X

j

�j0Nj � sc�00N0

#

:

ð17Þ

Next, we interpret the additional terms added to Eq (15) as perturbations to the growth/

death rate parameters,

dua ¼ � ZXsdga0N0

dmi ¼ � ZNsc�i0R0 þ sdg0iX0

dKP ¼ � sc�0PN0:

ð18Þ

Using these perturbations, we can write down the new steady-states in terms of a Taylor

expansion of the original ones without the new species. Using Einstein summation notation
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for repeated index (summing from index 1 instead of 0), these equations take the form

Xa ¼ Xa=0 þ wabdmb þ naidmi þ kaPdKP;

Ni ¼ Ni=0 þ wiadma þ nijdmj þ kiPdKP;

RP ¼ RP=0 þ wPadma þ nPidmi þ kPQdKQ:

ð19Þ

where we have defined the susceptibility matrices

wab ¼
@Xa

@ub
naj ¼

@Xa

@mj
kaQ ¼

@Xa

@KQ

wib ¼
@Ni

@ub
nij ¼

@Ni

@mj
kiQ ¼

@Ni

@KQ

wPb ¼
@RP

@ub
nPj ¼

@RP

@mj
kPQ ¼

@RP

@KQ
:

ð20Þ

Now we focus on the equations for the 0-th species in each level. We substitute the

expanded form of the new-steady states into Eq (17) and only keep the lowest order terms in

large MX, MN, and MR. It is straightforward to show via the the central limit theorem that each

of the sums can be approximated in terms of a mean and variance component (see Ref. [26]

for more details). Performing these approximations, we find the following self-consistency

equations for the abundances of the new species:

0 ¼ X0½gX
eff þ sgXeff

zX � DX
eff X0�

0 ¼ N0½gN
eff þ sgNeff

zN � DN
effN0�

0 ¼ R0½gR
eff þ sgReff

zR � DR
eff R0�:

ð21Þ

where zX, zN, zR are Guassian variables with zero mean and unit variance and we have defined

gX
eff ¼ � uþ ZXmdhNi

gN
eff ¼ � m � r1mdhXi þ ZNmchRi

gR
eff ¼ K � mcr2hNi

s2

gXeff
¼ Z2

Xs
2
dhN

2i þ s2
u

s2

gNeff
¼ Z2

Ns
2
c hR

2i þ s2
dr1hX2i þ s2

m

s2

gReff
¼ s2

k þ s
2
c r2hN2i

DX
eff ¼ � ZXs

2
dn

DN
eff ¼ ZNs

2
ck � ZXr1s

2
dw

DR
eff ¼ 1 � ZNr2s

2
cn

ð22Þ
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with

X2h i ¼
1

MX

X

b

X2

b
; N2h i ¼

1

MN

X

j

N2

j ; ; R2h i ¼
1

MR

X

Q

R2

Q;

w ¼
1

MX

X

b

@Xb

@ub
; n ¼

1

MN

X

j

@Nj

@mj
; ; k ¼

1

MR

X

Q

@RQ

@KQ
:

ð23Þ

Rearranging the self-consistency equations above, we find that X0, N0, and R0 follow trun-

cated Gaussian distributions of the form

X0 ¼ max 0;
gX
eff þ sgXeff

zX
DX

eff

" !

N0 ¼ max 0;
gN
eff þ sgNeff

zN
DN

eff

" !

R0 ¼ max 0;
gR
eff þ sgReff

zR
DR

eff

" !

:

ð24Þ

Finally, we make use of the fact that here is nothing special about species 0, i.e., the system

is “self-averaging” so the biomass distribution of one species over many systems is the same as

that of many species in one system. We compute the averages hXi, hNi, hRi, hX2i, hN2i, hR2i, χ,

ν, and κ by simply taking appropriate averages of X0, N0. and R0. This gives us our final set of

self-consistency equations,

hXi ¼
sgXeff

DX
eff
w1ðDgXeff

Þ ð25Þ

hNi ¼
smeff

DN
eff

w1ðDgNeff
Þ ð26Þ

hRi ¼
sKeff

DR
eff

w1ðDgReff
Þ ð27Þ

hX2i ¼
sgXeff

DX
eff

 !2

w2ðDgXeff
Þ ð28Þ

hN2i ¼
smeff

DN
eff

 !2

w2ðDgNeff
Þ ð29Þ

hR2i ¼
sKeff

DR
eff

 !2

w2ðDgReff
Þ ð30Þ

w ¼

*
@X
@u

+

¼
w0ðDgXeff

Þ

DX
eff

ð31Þ
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n ¼

*
@N
@m

+

¼ �
w0ðDgNeff

Þ

DN
eff

ð32Þ

k ¼

*
@R
@K

+

¼
w0ðDgReff

Þ

DR
eff

ð33Þ

where

DgReff
¼

gR
eff

sgReff

; DgXeff
¼

gX
eff

sgXeff

DgNeff
¼

gN
eff

sgNeff

ð34Þ

and we define the integrals

wnðDÞ ¼

Z 1

� D

dx
ffiffiffiffiffiffi
2p
p ðxþ DÞne� x2=2: ð35Þ

Then the jth moment of truncated Gaussian y ¼ max 0; aþczb

� �
, with positive c/b, can be writ-

ten in terms of the integral

hyji ¼
c
b

� �j
Z 1

� a=c

dz
ffiffiffiffiffiffi
2p
p e� z2

2 z þ
a
c

� �j
¼

c
b

� �j
wj

a
c

� �
:

3.1.2 N-level consumer resource model. Here we present our generalized consumer

resource model an arbitrary number of levels and relaxed assumptions on intra-species com-

petition and biomass conversion efficiency. We consider N levels with Mi species on each level

(i = 1, . . ., N). We use i = 1 to represent the bottom level and i = N for the top level. The abun-

dance Bi
m

for the μth follows the dynamics

1

Bi
m

dBi
m

dt
¼ gi

m
� DiBi

m
þ

X

n

Ziai;i� 1

mn
Bi� 1

n
�

X

n

aiþ1;i
nm

Biþ1

n ð36Þ

where αi, i−1 is the consumer preference matrix of species on the level i feeding on species on

level i − 1 beneath them. The top and bottom levels have boundary conditions α1,0 = αN, N−1 =

0. In general, any variable with superscript i< 1 or i> N are 0. In analogy to the three-level

model, we consider random consumer preference matrices with mean and variance

ai;i� 1
mn
¼
mi
a

Mi
þ si

a
di
mn

hdi;i� 1
mn
i ¼ 0; hdi;i� 1

mn
di;i� 1

ab i ¼ s
i
a

dmadnb

Mi

ð37Þ

where we have parameterized the variation in terms of the random variables di;i� 1

ab . We also

define the growth/death rates gi
m

to be independent with mean gi and standard deviation si
g for

each level. We note that in physical ecosystems gi should be positive for level i = 1 and negative

for higher levels. Finally, we define the new parameters Di to account for intra-species
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competition in level i that is not mediated by consumption of or predation by other levels, and

ηi 2 [0, 1] to account for finite efficiency of biomass conversion. Previously in the main text,

we assumed D3, D2 = 0 for carnivores and herbivores and D1 = 1 for plants, and all energy con-

version are perfect η2 = η3 = 1.

The following self-consistency cavity equation can be obtained by generalizing the previous

results from the three-level model. For the ith level, the abundance Bi follows a truncated

Gaussian distribution

Bi ¼ max 0;
gi
eff þ sgieff

zi

Di
eff

 !

ð38Þ

where zi are zero-mean Gaussian random variables with unit variance and effective variables

gi
eff ¼ gi � riþ1miþ1

a
hBiþ1i þ Zimi� 1

a
hBi� 1i

sgieff
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZiÞ
2
ðsi� 1

a
Þ

2qi� 1 þ ðsiþ1
a
Þ

2riþ1qiþ1 þ ðs
i
gÞ

2
q

Di
eff ¼ Di þ Ziðsi� 1

a
Þ

2
wi� 1 þ Ziþ1riþ1ðsiþ1

a
Þ

2
wiþ1

ð39Þ

with definitions

riþ1 ¼ Miþ1=Mi; hB0i ¼ hBNþ1i ¼ 0:

qi ¼ hðBiÞ
2
i; wi ¼

*
@Bi

@gi

+
ð40Þ

We derive the self-consistency equations by taking appropriate averages. For N levels, there

are a total of 3N equations,

hBii ¼
sgieff

Di
eff
w1ðDgieff

Þ;

hðBiÞ
2
i ¼

sgieff

Di
eff

 !2

w2ðDgieff
Þ;

wi ¼
w0ðDgieff

Þ

Di
eff

:

ð41Þ

where Dgieff
¼ gi

eff=sgieff
. We can define top-down to bottom-up ratio for each level

Di;top
eff

Di;top
eff þ Di;bottom

eff

¼
Ziþ1riþ1ðsiþ1

a
Þ

2
wiþ1

Ziþ1riþ1ðsiþ1
a
Þ

2
wiþ1 þ Ziðsi� 1

a
Þ

2
wi� 1

ð42Þ

Moreover, we can again write down the effective mean-field (TAP) equations for steady

states with effective competition. Defining the effective competition coefficients Di
eff , we can

derive coarse-grained equations for each layer at steady-state,

0 ¼
dBi

dt
¼ Bi½gi � Di

eff B
i � riþ1miþ1

a
hBiþ1i þ Zimi� 1

a
hBi� 1i þ si

Bz
i�; ð43Þ
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which look very similar to the coarse-grained model of multi-level food chains in [9], except

that the noise and competition are emergent.

Effective competition coefficients. Using the cavity equation, we can solve explicitly for

the three susceptibilities in Eqs (31)–(33),

w ¼ �
ZNs

2
cw0ðDgXeff

Þðw0ðDgReff
Þ � r2w0ðDgNeff

Þ þ r1r2w0ðDgXeff
ÞÞ

ZXs
2
dðw0ðDgNeff

Þ � r1w0ðDgXeff
ÞÞ

n ¼ �
w0ðDgNeff

Þ � r1w0ðDgXeff
Þ

ZNs
2
c ðw0ðDgReff

Þ � r2w0ðDgNeff
Þ þ r1r2w0ðDgXeff

ÞÞ

k ¼ w0ðDgReff
Þ � r2w0ðDgNeff

Þ þ r1r2w0ðDgXeff
Þ:

ð44Þ

Next, we observe that the integrals for the zeroth moments measure the fraction of species

in the regional species pool that survives at steady state, i.e.,

w0ðDgXeff
Þ ¼ M∗

X=MX;

w0ðDgNeff
Þ ¼ M∗

N=MN ;

w0ðDgReff
Þ ¼ M∗

R=MR:

ð45Þ

Also, recall the definitions

r1 ¼ MX=MN ;

r2 ¼ MN=MR:
ð46Þ

Substituting these expressions into Eq (44), the susceptibilities become

w ¼ �
ZNs

2
c

ZXs
2
d

M∗
X

MX

MN

MR

M∗
R � M∗

N þM∗
X

M∗
N � M∗

X

;

n ¼ �
MR

ZNMNs
2
c

M∗
N � M∗

X

M∗
R � M∗

N þM∗
X

;

k ¼
1

MR
ðM∗

R � M∗
N þM∗

XÞ:

ð47Þ

Using these susceptibilities, we obtain the expression for the order parameter for the relative

strength of top-down control versus bottom-control,

DN;top
eff

DN;top
eff þ DN;bottom

eff

¼
� ZXr1s

2
dw

� ZXr1s
2
dwþ ZNs

2
ck
¼

M∗
X

M∗
N

; ð48Þ

Now for the effective competition, we use the definition

f ¼
M∗

R þM∗
X � M∗

N

M∗
N � M∗

X
ð49Þ

PLOS COMPUTATIONAL BIOLOGY Emergent competition shapes top-down versus bottom-up control in multi-trophic ecosystems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011675 February 8, 2024 20 / 26

https://doi.org/10.1371/journal.pcbi.1011675


with

1=f ¼
M∗

N � M∗
X

M∗
R þM∗

X � M∗
N

¼
M∗

R

M∗
R þM∗

X � M∗
N

� 1: ð50Þ

to further simplify the susceptibilities,

w ¼ �
ZNs

2
c

ZXs
2
d

M∗
X

MX

MN

MR
f

n ¼ �
MR

ZNMNs
2
c

1

f

k ¼
M∗

R

MR

1

1þ 1=f
:

ð51Þ

Substituting these expressions into the definitions of effective competition in Eq (5) leads to

the expressions in terms of niches in Eq (10).

3.2 Numerical details

3.2.1 ODE simulations. In Figs 1(b)–1(c) and 4, we compare the results of simulations

and the mean-field equations derived using the cavity method. In order to perform these simu-

lations, we directly numerically integrate the ordinary differential equations in Eq (1). For

each trial, we first randomly generate consumer preference random, daj and cjA, with indepen-

dent Gaussian distributed elements with mean and variance specified in Eqs (2) and (3). We

then numerically solve the system of ordinary differential equations, consisting of MX + MN +

MR equations, until steady-state is reached. For both Figs 1(c) and 4, we chose a final time of

t = 10 with a time step of dt = 0.1. We chose the initial values of biomass to be uniformly dis-

tributed in the interval [1, 2]. While any positive value will lead to the same steady-state, values

closer to steady-state lead to faster convergence. We used the Mathematica function

“NDSolve” and solver method “StiffnessSwitching,” which works well here because the solu-

tion of biomass can be zero or non-zero, leading to very different stiffnesses of the ODEs.

3.2.2 Cavity equations. In every figure, we show some results found by numerically solv-

ing our analytic cavity equations. When deriving the cavity equations for the three-level

model, we ended up with 9 self-consistent equations, Eqs (25)–(33). Rewriting the susceptibili-

ties in terms of the other variables in Eq (44) results in 6 equations in terms of the variables

hXi, hNi,hRi, hX2i, hNi, and hRi which serve as the input into a numerical solver.

Expression our cavity equation in the form fið~xÞ ¼ 0 for i = 1, . . ., 6, we chose to convert

the root-finding problem to a constraint optimization problem of the form

Minimize~x
P

i½fið~xÞ
2
�;~x > 0 due to better availability of algorithms. We can optionally add the

constraint in Eqs (7) and (8) to improve accuracy. We used the default solver method for the

Mathematica function “NMinimize,” with solver options “AccuracyGoal! 5” and “MaxItera-

tions! 30000” or above. This function requires a range of initial points, which significantly

affect the efficiency of the algorithms. While choosing a reasonable range such as [0.1, 1] usu-

ally works, one trick we often used to guarantee good initial points is to run a small-scale simu-

lation such as 10 species, which is a rough approximation for the large system scenario that the

cavity method assumes. Then we use the value from the simulation for each variable as the

upper range and one-half of its value as the lower range.

All the code in this work is written in Mathematica. Demonstrative Mathematica notebooks

for both the cavity solution and the ODEs simulations can be found at https://github.com/

Emergent-Behaviors-in-Biology/Multi-trophic-ecosystem.
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4 Discussion

In this paper, we proposed a new model for three-level trophic ecosystems based on general-

ized Consumer Resource Models. Using the zero-temperature cavity method from spin glass

physics, we derived analytic expression for the behavior of this model that are valid for large

ecosystem with many species at each trophic level. We found that intra-trophic diversity gives

rise to “emergent competition” between species within a trophic level arising from feedbacks

mediated by other trophic levels. The strength of this competition depends on both environ-

mental parameters (energy influxes, death rates) and the diversity of the regional species pool.

Using analytic solutions, we defined new order parameters for assessing whether an ecosystem

is more susceptible to top-down or bottom-up control. Surprisingly, we found that one of

these order parameters depends on ecosystem properties only through the fraction of occupied

niches. Our analysis suggests that the relative importance of top-down control compared to

bottom-up control increases with: (1) higher energy influx into the ecosystem, (2) lower death

rate of predators (top level), (3) a larger fraction of species residing in the middle trophic level

in the regional species pool, a (4) lower fraction of carnivores and plants in the regional species

pool (species in the top and bottom trophic levels). We also found that the amount of top-

down control increases as predators in the top trophic level increase their trait diversity, and

decreases as herbivores increase their trait diversity.

Our theoretical work can be generalized to accommodate more realistic structures. For

instance, our analysis can be generalized to any number of levels, which would allow for inves-

tigations into how perturbations propagate through the entire food chain with damping and

amplification across levels. Moreover, adding other more complex ecological interactions such

as omnivorism, cross-feeding and decomposition could lead to a more realistic and specific

understanding of different types of ecosystems [55, 70, 71]. Practically, our theoretical predic-

tions also suggest that a simple way to determine if a three-level system exhibits top-down or

bottom-up control is to count the number of carnivores and herbivores. These predictions,

summarized in Tables 1 an 2, also provide simple, qualitative rules of thumb for understanding

how ecosystem properties change with the shifting species composition of regional species

pools and environmental variables.

Supporting information

S1 Text. Top-down and bottom-up control in toy model. In this section, we analyze the spe-

cial case below where there is only 1 species with intra-species competition on each level.

(PDF)

S1 Fig. Demonstration of bottom-up control and top-down control analogous to Fig 2 for

special case with single species on each level. (a) Exact biomass at each trophic level as a func-

tion of u1 with k1 = 5, m1 = 1, ηN = ηX = 0.9, DR = 1, DX = 5, DC = 5.c11 = 4, d11 = 4 (left), and as

a function of k1 with u1 = 2 (right). (b) Same as (a) except DR = 3, DX = 3, d11 = 9.

(PDF)

S2 Fig. Plot of effective competition coefficients, (a) DR
eff , (b) DN

eff and (c) DX
eff under the

same conditions as Fig 4.

(PDF)

S3 Fig. Plots of effective quantities versus model parameters. Plot of DX
eff , D

N
eff , D

R
eff , and

DN
top=ðD

N
top þ DN

bottomÞ versus r1 2 [0.4, 1.2], r2 2 [0.4, 1.2], σd 2 [1, 2.5], σc, u 2 [1, 5], and k 2
[1, 5], obtained from evaluating the cavity solutions with all 6 parameters varied simulta-

neously, each with 6 possible values in the range. Each trajectory correspond to varying the
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parameter on it’s x-axis, while fixing the other 5 parameters. These plots arranged in table

directly maps to the result in Table 1.

(PDF)

S4 Fig. System size affects cavity solution convergence. (a)Histograms of the steady state

reached by dynamics of a system with MX = 50 species of carnivores, MN = 56 herbivores and

MR = 62 plants, with k = 4, m = 1, u = 1, σc = σd = 0.5, μc = μd = 1, ηX = 1, ηN = 1, σk = σm = σu =

0.1, and the distribution predicted by our cavity solution. Note that a black dot correspond the

finite extinction probability (instead of probability density) predicted by cavity solution, while

a black dash correspond to the probability density(b) The average square deviation of the sin-

gle system statistics from cavity solution as a function of MX while keeping fixed ratios r1 = r2

= 0.9, averaged from 200 sample systems.

(PDF)

S5 Fig. Typical distributions of biomass with uniform distributions of consumer prefer-

ence matrix elements also agrees well with cavity method. Solutions shown with parameters

k = 4, u = 1, σc = 0.5, μc = 5, σd = 0.5, μd = 5, r1 = 1, r2 = 1 and sampled from 200 systems with

30 species in each level.

(PDF)
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