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Materials and machines are often designed with particular goals in mind, so that they exhibit desired
responses to given forces or constraints. Here we explore an alternative approach, namely physical coupled
learning. In this paradigm, the system is not initially designed to accomplish a task, but physically adapts to
applied forces to develop the ability to perform the task. Crucially, we require coupled learning to be
facilitated by physically plausible learning rules, meaning that learning requires only local responses and
no explicit information about the desired functionality. We show that such local learning rules can be
derived for any physical network, whether in equilibrium or in steady state, with specific focus on two
particular systems, namely disordered flow networks and elastic networks. By applying and adapting
advances of statistical learning theory to the physical world, we demonstrate the plausibility of new classes
of smart metamaterials capable of adapting to users’ needs in situ.
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I. INTRODUCTION

Engineered materials are typically designed to have
particular sets of properties or functions [1]. The design
process often involves numerous trial and error iterations,
during which the system is repeatedly tested for the desired
functionality [2], modified, and tested again. Alternatively,
rational design processes start from detailed knowledge of
material components and typically use computation to
predict the consequences of tweaking the system to sift
through many possibilities.
A second class of strategies is based on learning, where

systems can adjust or be adjusted at the microscopic scale,
in response to training examples, to develop the desired
functionality. Until recently, learning strategies were pri-
marily restricted to nonphysical networks such as neural
networks on a computer. One class of methods, which we
refer to as “global supervised learning,” is ubiquitous for
problems such as data classification [3,4]. These methods
are based on the optimization of a cost or loss function that
is “global” in that it depends on all of the microscopic
details of the system. In the context of neural networks, for
example, global supervised learning optimizes the network

by modifying a set of learning degrees of freedom (e.g.,
weights) controlling the signal propagation between the
input and output sections of the network.
Global supervised learning was recently used to design

flow and elastic networks—actual physical systems—with
particular desired functions, e.g., allostery [5,6]. In this
physical context, such learning methods were dubbed
“tuning,” since modifying the learning degrees of freedom
(e.g., pipe conductances or spring constants in flow or
mechanical networks, respectively) requires external inter-
vention at the microscopic level.
In contrast, natural systems such as the brain evolve

to obtain desired functions using a fundamentally
different framework of learning, which we refer to as
“local learning.” Crucially, this evolution is entirely autono-
mous, requiring no external designer for evaluation of the
current state of the system and its subsequent modification.
In local learning, parts of the network can only adapt due to
the local information available in their immediate vicinity
(e.g., a synapse adapts in response to the activities only of
the neurons directly connected to it [7]). It is particularly
useful to apply this learning approach in physical networks
such as flow or mechanical networks because the micro-
scopic elements of such networks cannot perform compu-
tations and do not encode information about the desired
functionality a priori.
Training physical networks for desired function,

using either global or local supervised learning, involves
two different sets of degrees of freedom. First, networks
respond to source constraints by minimizing a scalar
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function with respect to their physical degrees of freedom.
For example, central-force spring networks minimize the
elastic energy by adjusting the positions of their nodes to
achieve force balance on every node, while flow networks
minimize the power dissipation by adjusting the currents on
edges to obey Kirchhoff’s law at every node. Second,
networks can learn specific desired target responses to
sources by adjusting their learning degrees of freedom.
These degrees of freedom could correspond to the stiff-
nesses or equilibrium lengths of springs in a mechanical
network or the conductances of edges in a flow network. In
global supervised learning, these degrees of freedom are
adjusted to optimize the cost function.
We consider the case where the desired outcome of

the learning process is to achieve tailored responses of
“target” edges or nodes to external constraints applied
at “source” edges or nodes. For example, an allosteric
response in a mechanical network corresponds to a desired
strain at a set of target edges in response to a strain applied
at source edges. Similarly, for the simplest “flow allosteric”
response, a pressure drop across a source edge in a flow
network leads to a desired pressure drop across a target
edge elsewhere in the network [8].
Recently, it was shown that a local supervised learning

process of “directed aging,” in which the time evolution of a
disordered system is driven by applied stresses, can be used
to create mechanical metamaterials with desired properties
or functions [9–11]. For example, Refs. [10,11] consider a
form of directed aging for a mechanical spring network in
which the learning degrees of freedom are the equilibrium
lengths of the springs comprising the network edges. The
equilibrium length of each spring lengthens (shortens) if the
spring is placed under extension (compression)—this is a
local response to local extension (compression). Isotropic
compression [9,10] or repeated cycles of isotropic com-
pression and expansion can drive the Poisson’s ratio of such
a network from positive to negative values, while cycles of
compression or stretching oscillations of source and target
edges can lead to allosteric response [11].
Similarly, local rules in growing vascular networks [12]

and folding sheets [13,14] allow those systems to learn
properties or functions autonomously. The great advantage
of local supervised learning such as directed aging over
global supervised learning is that the process is scalable—it
can be applied to train large systems without having to
manually modify their parts [9]. In addition, directed aging
does not require detailed knowledge of microscopic inter-
actions or the ability to manipulate (microscopic) learning
degrees of freedom [9].
While directed aging methods are successful in training

certain physical networks for desired functions, they
fail in others, particularly in highly overconstrained net-
works such as flow networks and high-coordination
mechanical networks. Failure occurs because directed
aging minimizes the physical cost function of a desired

state of the network, rather than the cost function whose
minimization corresponds directly to the desired function
in global supervised learning.
Here we propose a general framework, which we call

“coupled local supervised learning,” for physical networks
such as flow or mechanical networks. The rules are
designed to adjust learning degrees of freedom in response
to local conditions such as the tension on a spring in a
mechanical network or the current through a pipe of a flow
network. The framework provides a way of deriving rules
that lead to modifications of learning degrees of freedom
that are extremely similar to those obtained by minimizing
the cost function. As a result, they are as likely to succeed
in obtaining the desired response as global supervised
learning would be.
The coupled learning framework is inspired by advances

in neuroscience and computer science [15–19] known as
“contrastive Hebbian learning.” As in contrastive Hebbian
learning, one considers the response in two steady states
of the system, one in which only source constraints are
applied (free state), the other where source and target
constraints are applied simultaneously (clamped state).
The particular rules we introduce, which we call “coupled
learning rules,” are also inspired by the strategy of
“equilibrium propagation” [18], which promotes infini-
tesimal nudging and hence close proximity between the
free and clamped states. In Sec. II, we first show in detail
how coupled learning works for flow networks (Sec. II A).
We successfully train such networks to obtain complex
functionalities. We then discuss the general framework of
coupled learning in generic physical networks (Sec. II B)
and apply these ideas to nonlinear elastic networks
(Sec. II C). We demonstrate our learning framework on
a standard classification problem, distinguishing hand-
written digits (Sec. II D).
It is important to note that implementation of coupled

learning should be possible in real systems. In Sec. III,
we therefore consider complications that may arise in
realistic learning scenarios. We first derive an approximate
version of the local learning rule that may be more easily
implemented experimentally in a flow network (Sec. III A).
While inferior to the full learning rule, approximate
coupled learning still gives rise to desired functionality.
We then discuss limitations due to noisy measurements of
the physical degrees of freedom, that limit the usefulness of
small nudging, and the implications of drifting in the
learning degrees of freedom (Sec. III B). Finally, we
address the effect of network size on the physical relaxation
time and the coupled learning rules (Sec. III C).
Following the introduction of the coupled learning rules,

in Sec. IV we compare coupled learning to standard global
supervised learning frameworks that minimize a cost
function [5,6,20,21], discussing the experimental realiz-
ability of coupled learning in contrast with such methods.
We hope this work will stimulate further interest in
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physically inspired learning, opening possibilities for new
classes of metamaterials and machines, able to autono-
mously evolve and adapt in desired ways due to external
influences.

II. COUPLED LEARNING FRAMEWORK

A. Coupled learning in flow networks

We first discuss coupled learning in the context of flow
networks. Previously, such networks were trained to exhibit
the particular function of flow allostery [5,6] using global
supervised learning by minimizing a global cost function.
Specifically, the networks were trained to have a desired
pressure drop across a target edge (or many target edges) in
response to a pressure drop applied across a source edge
elsewhere in the network. Here we show how a strictly local
learning rule can similarly train flow networks.
A flow network is defined by a set of N nodes labeled μ,

each carrying a pressure value pμ; these pressures are the
physical degrees of freedom of the network. The nodes are
connected by pipes j characterized by their conductances
kj; these conductances are the learning degrees of freedom
because modifying the pipe conductances will enable the
network to develop the desired function. Assuming each
pipe is directed from one node μ1 to the other μ2, the flow
current in the pipe is given by Ij ¼ kjðpμ1 − pμ2Þ≡ kjΔpj.
If boundary conditions are applied to the network (e.g.,
fixed pressure values at some nodes) the network finds a
flow steady state, in which the total dissipated power,

P ¼ 1

2

X
j

kjΔp2
j ; ð1Þ

is minimized by varying the pressures at uncon-
strained nodes.
We now define a task for the network to learn as follows.

We subdivide the physical degrees of freedom (node
pressures) fpμg into three types, corresponding to source

nodes pS, target nodes pT , and the remaining “hidden”
nodes pH. The desired task is defined such that the target
node pressure values reach a set of desired values fPTg
when the source node pressures are constrained to the
values fPSg. A generic disordered flow network does not
possess this function, so design strategies are needed to
identify appropriate values for the pipe conductance values
fkjg that achieve the desired task.
For the network to learn, or adapt autonomously to

source pressure constraints, we allow the learning degrees
of freedom fkjg (pipe conductances) to vary depending on
the physical state of the network fpμg. A learning rule is an
equation of motion for the learning degrees of freedom,
taking the form:

_kj ¼ fðpμ; kjÞ: ð2Þ

We focus on local learning rules, where the learning
degree of freedom kj in each pipe j can only change in
response to the physical variables (pressure values) fpμg on
the two nodes associated with pipe j, pμðjÞ.
We now introduce the framework of coupled learning.

Let us define two sets of constraints on the pressure values
of the network. The free state pF

μ is defined as the state
where only the source nodes pS are constrained to their
values PS, allowing pT , pH to obtain their steady state [i.e.,
to reach values that minimize the physical cost function, the
dissipated power Pðpμ; kjÞ] [Fig. 1(a)]. The clamped state
pC
μ is the state where both the source and target node

pressures pS, pT are constrained to PS and pC
T , respectively,

so that only the remaining (hidden) nodes pH are allowed to
change to minimize the dissipated power. The values of the
dissipated power in the resulting steady states are denoted
PFðPS; pF

T ; p
F
H; kjÞ and PCðPS; pC

T ; p
C
H; kjÞ for the free and

clamped states, respectively. In the following we simplify
notation by suppressing the variables in the parentheses.

FIG. 1. Coupled learning in flow networks. (a) In the free phase, node pressures are constrained such that source nodes (red) have
specific pressure values pS. The target node pressures pT and the dissipated power at all pipes Pj attain their steady-state values due to
the natural flow processes in the network. (b) In the clamped phase, a supervisor constrains the target node pressures so that they are
slightly closer to their desired values compared to the free state. (c) A strictly local learning rule, i.e., the modification of pipe
conductance according to its response, is proportional to the difference in dissipated power between the free and clamped states. The
learning rule thus couples the pressures at the source and target nodes.
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A disordered flow network constrained only at its
sources (free state) will generally find a steady state in
which the target pressures fpF

Tg differ significantly from
the desired responses fPTg. To concretely define the
clamped state, we introduce a trainer (supervisor) that
reads the free-state target node pressures and nudges them
slightly away from their free-state pF

T values by clamping
them at

pC
T ¼ pF

T þ η½PT − pF
T �; ð3Þ

where η ≪ 1 [Fig. 1(b)]. The supervisor imposes pressures
on the target nodes that are a small step closer to the desired
response PT . We then propose a learning rule for the pipe
conductance values [Fig. 1(c)]:

_kj ¼ αη−1
∂
∂kj fP

F − PCg

¼ 1

2
αη−1f½ΔpF

j �2 − ½ΔpC
j �2g; ð4Þ

where α is a scalar learning rate. Note that the derivative of
the physically minimized function (power dissipation P) is
taken only directly with respect to the learning degrees of
freedom fkjg (pipe conductances), excluding derivatives of
the physical variables with respect to them (e.g., ∂pi=∂kj).
In the limit of small nudges η → 0 such derivatives cancel
out when the difference between the free and clamped
terms is taken [18].
We note that the learning rule of Eq. (4) is similar to the

one derived for analog resistor networks by Kendall et al.
[22]. While their equation has the same form, their
definition of the clamped state is different, as they draw
currents into the output nodes rather than fixing the output
pressures. Their nudging is thus akin to applying a force on
the output nodes. The simplest implementation of the
learning rule is to iteratively apply Eq. (4) for some period
of time between each nudge of the clamped boundary
condition in Eq. (3). Here we focus on learning in the
quasistatic limit where we completely relax the node
pressure values to their steady state at each iteration to
reach the minimum of the power dissipation P.
The learning rule of Eq. (4) is manifestly local, as the

conductance of a pipe kj changes only due to the flow
through that pipe. Such local learning rules may conceiv-
ably be implemented in physical pipes for which the
conductance (radius) of the pipe is controlled by the current
in it. Note that the network is not required to encode
information about the desired state function a priori. That
information is fed into the network by the actions of the
external supervisor, which slightly nudges the target node
pressures toward the desired state at every iteration. We
later show how these properties of coupled learning stand in
contrast to tuning algorithms based on optimization of
global cost functions.

The intuition underlying coupled learning is straightfor-
ward. We wish to obtain a network with the desired target
pressures fPTg when source pressures fPSg are applied.
We divide the training process into small steps, each of
which depends on free and clamped states. At every
iteration of Eq. (3), the clamped state is initially slightly
“better” than the free state, in that the node pressures at the
targets fpTg are slightly closer to the desired pressures
fPTg due to the applied nudge. The learning rule changes
the pipe conductances fkjg by adding the gradient at the
free state (raising the free-state power dissipation) and
subtracting the gradient at the clamped state (lowering the
clamped-state power dissipation). By adjusting the pipe
conductances, the network response adapts to more closely
reflect the clamped state. After many iterations of the
learning rule in Eq. (4), f_kjg approach zero and the free
state approaches the desired target pressures PT . By
iterating in this fashion, the network carves out a valley
in the landscape of the dissipated power P with respect to
the target node pressures fpTg that deepens as one
approaches the desired target pressures—much as directed
aging does when it is successful [11]. This intuition implies
that the nudge magnitude value should be small η ≪ 1, as
was proposed for equilibrium propagation [18] (see the
Appendix A). Such choice allows the gradual modification
of the power landscape P so that it becomes minimal along
a valley at the desired state. The approach of using small
nudges has been shown to achieve excellent results on hard
computational learning problems such as CIFAR-10 [23].
We test the coupled learning rule, Eq. (4), on disordered

flow networks of various sizes (N ¼ 64, 128, 256, 512,
1024, 2048). Each of these networks is initialized with
pipes of uniform conductance kj ¼ 1 in Fig. 2(a). In each
instance, we pick MS ¼ 10 nodes randomly to be the
source nodes and apply the source pressures PS, indicated
by the sizes of the red dots. These source pressures are
themselves chosen randomly from a Gaussian distribution
N ð0; 1Þ. We also randomly choose MT ¼ 10 different
target nodes, and desired pressures at target nodes, fPTg,
randomly from a Gaussian distribution scaled by the
source pressures N ð0; 0.2PPSÞ; their values are indi-
cated by the sizes of the blue dots in Fig. 2(a). The free-
state pressures pF, given applied source pressures PS, are
first computed by minimizing the dissipated power. To
compare the output pF

T of the network to the desired
response PT , we use the standard error function
C ¼ 1

2

P
T ½pF

T − PT �2. Untrained networks have a large
error, and training should gradually decrease it. The
network achieves the function perfectly when the error
vanishes.
We now consider the clamped state by nudging the target

nodes toward their desired values, setting their pressures to
fpC

T ¼ pF
T þ η½PT − pF

T �g, with η ¼ 10−3. We minimize
power dissipation with respect to the hidden nodes pH and
then update the conductance values (learning degrees of
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freedom) according to Eq. (4) with a learning rate of
α ¼ 5 × 10−4. Figure 2(b) shows the change of conduct-
ance of each edge at the first iteration of learning, with blue
(red) signifying positive (negative) conductance changes.

This process constitutes one step of the training process; at
the end of each step, we compute the error function C
[Fig. 2(d)]. The difference between the obtained targets and
the desired ones decreases exponentially by many orders of
magnitude during the training process, reaching machine
precision. This result demonstrates the success of the
coupled learning approach. We see that the magnitude of

the change in the conductance vector, jΔkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jΔk2j
q

,

calculated for each step of the training process, also
decreases exponentially during training [blue dashed line
in Fig. 2(d)]. This result shows that the learning process is
adaptive—it slows down as it approaches good solutions.
The final trained network is displayed in Fig. 2(c), with
edge thicknesses indicating conductance. The pipes of the
trained network have changed considerably compared to
the initial one shown in Fig. 2(a), with some pipes
effectively removed (with conductances near zero).
The results of applying the training protocol to networks

of different sizes, for different initial networks and choices
of the source and target nodes and their pressure values, are
shown in Figs. 2(e) and 2(f), where errors are rescaled by
the initial error for each network. Our learning algorithm is
generally able to train the networks to exhibit the desired
responses, successfully decreasing the initial error by
orders of magnitude. We find that networks of different
size converge on good solutions at different rates, with the
error at a particular chosen time t ¼ 103 scaling roughly as
a power law CðN; tÞ ∼ Nq (with power q in the range
1–2). We note that networks of different sizes may not be
equivalent, as training may depend on idiosyncratic details,
such as particular distances between sources and targets, or
other geometrical features. We leave detailed exploration of
the effects of network size and source-target geometry to
future study.
It is noteworthy that flow networks are linear, so that the

mapping between the sources to targets is always linear
pT ¼ AðkÞPS (A is a MS ×MT matrix that depends on the
conductance values). Networks which contain hundreds of
edges have many more conductance values than compo-
nents of A so that there are far more degrees of freedom
than constraints. While this argument suggests our flow
networks are overparametrized and should always succeed
in learning, we stress that not all linear transformations are
possible; pressure values everywhere in the network are
weighted averages of their neighbors (due to Kirchhoff’s
law). More importantly, the linear transformation is
limited because all conductance values must be non-
negative (see Appendix D). As a result, flow networks
cannot implement any desired linear mapping between the
inputs and outputs, and nonzero errors are expected for
certain tasks after training. It was previously shown that
the likelihood of flow networks to successfully learn a set
of tasks depends on network size [6], even when trained
with gradient descent. Therefore, we expect that training
larger networks for a given task is more likely to succeed

FIG. 2. Training flow networks with coupled learning. (a) An
untrained disordered flow network with uniform conductance at
all pipes ki ¼ 1, as indicated by uniform thicknesses of the green
edges. The ten red and blue nodes correspond to the source and
target nodes with dot sizes indicating the magnitudes of the
source pressures fPSg and desired target pressures fPTg. (b) In
each step, conductance values are modified using Eq. (4),
according to the difference in flow between the free and clamped
states. This process is applied iteratively. (c) After training, the
network conductance values, indicated by the thicknesses of the
green edges, are considerably changed compared to the initial
network shown in (a). (d) During training of a network (N ¼ 512
nodes), the pressure values of the target nodes approach the
desired values, as indicated by the exponentially shrinking error
(black solid line). The desired target values fPTg are reached
when the error is small; the modification of the conductance in
each time step, Δk (blue dashed line), vanishes exponentially as
well. (e) We train multiple networks of different sizes
N ¼ 64–2048, and find that all can be trained successfully with
coupled learning. Error bars indicate the variation with initial
network and choice of sources and targets. In all cases, errors
decay exponentially, yet larger networks converge slower.
(f) Picking a certain time t ¼ 103, we find that the error scales
up with system size as a soft power between 1 and 2.
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due to overparametrization, at the expense of slower
convergence rates.
Furthermore, while computational neural networks are

often initialized with random (e.g., Gaussian distributed)
weights to compensate for their symmetries [24,25], we
find that our disordered networks can be trained success-
fully with uniform kj ¼ 1 initialization. Indeed, our tests
with initial weights of the form kj ¼ N ð1; σ2Þ, with
0 < σ ≤ 0.5, have yielded qualitatively similar results to
those shown in Fig. 2(b), with respect to both training time
and accuracy.
Recently, a similar set of ideas [22,23] based

on equilibrium propagation was independently proposed
to train electric resistor networks. This approach is very
similar to our framework. The difference is that
Refs. [22,23] used a nudged state defined by injecting
currents to target nodes, instead of by clamping voltages
as in our approach. Their method converges to gradient
descent in the limit η → 0. While our method does not, we
find that coupled learning and gradient descent give very
similar results in our trained networks (see Sec. IV). Our
focus in this paper is also somewhat different from theirs;
we showcase coupled learning in general physical net-
works in which the system naturally tends to minimize a
physical cost function with respect to the physical degrees
of freedom, and emphasize considerations regarding the
implementation of coupled learning in experimental
physical networks.

B. Coupled learning in general physical networks

We now formulate coupled learning more generally so
that it can be applied to general physical networks.
Consider a physical network with nodes indexed by μ
and edges indexed by j. As in the special case described
earlier, fxμg are physical degrees of freedom (e.g., node
pressure for a flow network). Network interactions depend
on the learning degrees of freedom on the network edges
fwjg (e.g., pipe conductance in flow networks). We restrict
ourselves to the athermal case where, given some initial
condition xμðt ¼ 0Þ, the physical degrees of freedom
evolve to minimize a physical cost function E (e.g., the
power dissipation for a flow network) to reach a local or
global minimum Eðxμ;wjÞ at xμ, where both E and fxμg
depend on fwjg.
We define the free state xFμ where the source variables xμ

alone are constrained to their values, and xT , xH equilibrate
[i.e., minimize Eðxμ;wjÞ]. At the clamped state xCμ both
source and target variables xS, xT are constrained, so only
the hidden variables are equilibrated. An external trainer
(supervisor) nudges the target nodes by a small amount η
toward the desired values XT ,

xCT ¼ xFT þ η½XT − xFT �; ð5Þ

with η ≪ 1. The general form of coupled learning is then

_w ¼ αη−1∂wfEFðxS; xFT Þ − ECðxS; xCT Þg; ð6Þ

where α is again the learning rate. We thus find a general
learning rule similar to equilibrium propagation [18], with
the understanding that only the direct derivatives (∂wE)
are performed, excluding the physical state derivatives
∂wxF; ∂wxC which cancel out. Given any physical network
with a known physical cost function Eðxμ;wjÞ, one can
derive the relevant coupled learning rule directly from
Eq. (6). Coupled learning is performed iteratively until the
desired function is achieved. Note that in physical net-
works, E can generically be partitioned as a sum over edges
E ¼ P

j Ej(xμðjÞ;wj). Each term Ej for edge j depends
only on the physical degrees of freedom attached to the two
nodes μðjÞ that connect to edge j. The learning rule of
Eq. (6) is thus guaranteed to be local, in contrast to many
design schemes relying on the optimization of a global cost
function. Moreover, the network is not required to encode
any information about the desired response. This informa-
tion is fed to the network by the trainer, which nudges the
target physical degrees of freedom closer to the desired
state at every iteration of the learning process. Note that
while our discussion so far and Fig. 1 are restricted to a
physical network with binary edges (i.e., binary physical
interactions), coupled learning does not assume binary
interactions and is valid for arbitrary n-body potentials. For
more information on the general coupled learning rule, see
Appendix B.

C. Elastic networks

To demonstrate the generality of our coupled learning
framework, we apply it to another physical system, central-
force spring networks. Here we have a set of N nodes
embedded in d-dimensional space, located at positions
fxμg. The nodes are connected to their neighbors in the
network by linear springs, each having a spring constant kj
and equilibrium length lj. The energy of a spring, labeled
j, depends on the strain of that spring, Ej ¼ 1

2
kjðrj − ljÞ2,

where rj is the Euclidean distance between the two nodes
connected by the spring. The physical cost function in this
case is the total elastic energy of the network, given by
E ¼ P

j∈springs Ej. We choose source and target springs,
whose lengths are rS and rT , and train the network so that
an application of source edge strains fRSg gives rise to
desired target edge strains fRTg.
In contrast to flow networks, spring networks are non-

linear in the physical variables fxμg, due to the nonlinearity
in the Euclidean distance function. Moreover, while the
spring constants fkjg are formally equivalent to conduc-
tances in flow networks, the equilibrium lengths fljg have
no direct analog in flow networks. These extra variables are
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additional learning degrees of freedom that we can adjust in
addition to the spring constants.
The free and clamped states of the spring network are

applied similarly to the previous example, with the excep-
tion that we define the source and target boundary con-
ditions on the edges of the network rather than the nodes,
demonstrating that the coupled learning framework can be
applied in either case. Next, we apply the coupled learning
rule (6) to obtain two separate learning rules, one for the
spring constants kj, the other for the rest lengths lj:

_kj ¼
α

η

∂
∂kj fE

F − ECg

¼ α

2η
f½rFj − lj�2 − ½rCj − lj�2g;

_lj ¼
α

η

∂
∂lj

fEF − ECg

¼ α

η
kjf½rFj − lj� − ½rCj − lj�g: ð7Þ

Learning in elastic networks can be accomplished
through modification of the spring constants, rest lengths,
or a combination of both. As before, Eq. (7) gives local
learning rules, where each spring only changes due to the
strain on that particular spring. To test these learning rules,
we train elastic networks with N ¼ 512 and N ¼ 1024
nodes with multiple choices of 10 random source strains
and 3 random target strains. Elastic network calculations
were performed using a specialized benchmarked set of
computational tools, used earlier for research on tuned
networks [5,26]. The success of the training is again
assessed using the error C ¼ 1

2

P
T ½rFT − RT �2, measuring

deviation from the desired target lengths. We find that
regardless of whether the network learns by modifying its
spring constants [Fig. 3(a)] or rest lengths [Fig. 3(b)], the
networks are consistently successful in achieving the desired
target strain, reducing the error C by orders of magnitude.
Larger networks take slightly longer to learn, but achieve
similar success. We find that the rest-length-based learning

rule gives somewhat more consistent learning results for
different networks and source-target choices, as evidenced
by smaller error bars in Fig. 3(b). Recently, a rule similar to
that of Eq. (7) was used to prune edges in elastic networks to
obtain desired allosteric responses [27]. It is notable that
Ref. [27] uses a “symmetrized” version of the learning rule,
where the free state is replacedwith a negative clamped state,
where the output nodes are held farther away from their
respective desired value.

D. Supervised classification

In Secs. II A and II C we trained networks to exhibit
functions inspired by allostery in biology, obtaining a
desired map between one set of sources (inputs) and one
set of targets (outputs). Here we train flow networks to
display a function inspired by computer science, namely,
the ability to classify images. In classification, a network is
trained to map between multiple sets of inputs and outputs.
In order to use our coupled learning protocol for simulta-
neous encoding of multiple input-output maps, we slightly
modify the training process in the spirit of stochastic
gradient descent [28]. Each training image provides an
input, and the correct answer for that image is the desired
output. Training examples are sampled uniformly at ran-
dom, and the coupled learning rule of Eq. (4) is applied
accordingly.
A simple example of a classification problem, often used

to benchmark supervised machine learning algorithms, is to
distinguish between labeled images of handwritten digits
(MNIST [29]). Each image corresponds to a particular
input vector (e.g., pixel intensity values), while the desired
output is an indicator of the digit displayed. Typically an
algorithm is trained on a set of example images (training
set), while the goal is to optimize the classification
performance on unseen images (test set).
Here, we train flow networks to distinguish between

images of two digits (0 and 1). We pick 50 images of each
digit (class) from the MNIST database to serve as a training
set, and an additional 50 images of each digit as a test set.
Instead of using the images themselves, we first carry out a
principal component analysis of all MNIST images, and
train the network using the top 25 principal components of
the training set images. The inputs (source pressures) are
given by these principal components of the training images
for a randomly selected set of 25 source nodes. We
additionally pick 2 random output (target) nodes, one for
each digit. The desired output for a training example
corresponding to a 0 is for the first output node, the 0
target node, to have high pressure (p‘00 ¼ 1), and for the
second output node, the 1 node, to have no pressure
(p‘10 ¼ 0). The target pressures are reversed when an
example corresponding to the digit 1 is chosen so that
the 1 node has p‘10 ¼ 1 and the 0 node has p‘00 ¼ 0. At each
iteration of the learning rule, the network is presented with
a single training image, sampled uniformly at random from

(a) (b)

FIG. 3. Training spring networks by modifying (a) spring
constants or (b) rest lengths. The error in the target edge lengths
is shown as a function of the number of training iterations for
N ¼ 512 (black circles) and N ¼ 1024 (blue squares) networks.
Training by coupled learning is successful for either the stiffness
or rest length degrees of freedom.
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the training set, and is nudged toward the desired
output for that image. A training epoch is defined as the
time required for the network to be presented with 100
training examples.
The error between the desired and observed behavior is

shown in Fig. 4(a) for each of the digits. The solid lines
represent errors for the training set, while the dashed lines
show errors for the test set. We see that the network not
only reduces the training error, but also successfully
generalizes, reducing the test errors as well. While the
pressure at the output nodes is continuous, we want the
network to make a discrete choice about the label of
the shown image. We say that the predicted label is given
by the target node with the larger pressure. With this
definition, we see that the classification accuracy of the
network starts at about 50% and improves dramatically
during training [Fig. 4(b)]. After training, the overall
training accuracy reaches 98%, while the test accuracy is
95%. This learning performance is almost as good as that
of simple machine learning algorithms such as logistic
regression, which for the same data yields a training
accuracy of 100% and a test accuracy of 98%. Note that

we did not tune hyperparameters to achieve the listed
accuracies; such tuning might well improve the perfor-
mance of our algorithm. In Figs. 4(c) and 4(d), the network
response to two select input images is shown. When the
source nodes are constrained with pressure values corre-
sponding to an image of a 0, the 0 target node has high
pressure (blue) while the 1 target node has very low
pressure. The opposite response occurs when an image
of a 1 is applied as input.
As discussed above, we used a training approach in the

spirit of stochastic gradient descent, training the network
with one training example at a time. We note that it may be
experimentally possible to train the network using batch
gradients, presenting many training examples in quick
succession, so that the learning rule averages the conduct-
ance update over these examples. A similar effect can be
achieved by maintaining the rate of example presentation,
yet slowing down the learning rate α.

III. EXPERIMENTAL CONSIDERATIONS

In the previous section we introduced the coupled
learning rules that respect the physical requirements of
locality and the fact that the desired response cannot be
encoded in the network a priori. We have demonstrated
computationally that flow and mechanical networks suc-
cessfully learn desired behaviors using such learning rules.
For networks to learn autonomously in a physical setting,
the network must be able to implement the coupled
learning rules as the physical dynamics of their learning
degrees of freedom. Furthermore, an external supervisor
needs to be able to clamp the target nodes as needed. For
fluid flow networks, coupled learning requires the cou-
pling of pipe conductance values to the flow inside the
pipe. For example, constriction of pipes can be achieved
by entrainment of sediment in the flow, and its deposition
inside the pipes [30,31]. These dynamics could support a
one-sided learning rule as described in Sec. III A. In elastic
networks, either the stiffnesses or rest lengths of bonds
need to change for learning to be possible. Several classes
of materials are known to adapt their stiffness in response
to applied strain, e.g., ethylene vinyl acetate [32] and
thermoplastic polyurethane [33]. The former has been
used to train materials for auxetic behavior using directed
aging [9].
In the following we describe some potential experi-

mental difficulties in implementing coupled learning in
physical networks and how they may be overcome. We
first discuss an approximation to the coupled learning
rules, allowing for a simpler implementation in flow
networks (Sec. III A). Then, we describe the effects of
plausible experimental issues, such as noisy physical
degrees of freedom or drifting learning degrees of freedom
(Sec. III B), and the effect of network size on the physical
relaxation assumed in coupled learning (Sec. III C).

FIG. 4. Classification of MNIST digits (0’s and 1’s). (a) The
classification error (value of cost function) [Eq. (11)] for the
digits 0 (blue) and 1 (black) versus the number epochs, where
each epoch consists of 100 iterations of the learning rule with a
different randomly selected training image presented at each
iteration. Training error is indicated by solid lines and test error
by dashed lines. (b) Prediction accuracy on test images (fraction
of correct predictions made by the network for digits 0 and 1)
versus number of epochs. Total test accuracy shown in red. (c),(d)
Response of the network when presented with the image at the
top left. The power dissipated at each edge is indicated by the
intensity of the edge color. while the pressures of target nodes are
labeled with blue (0) and black (1) circles. When a 0 image is
shown, the 0 target node has high pressure (blue circle) and the 1
target node has low pressure; when a 1 image is shown, the 1
target node has high pressure (black circle) and the 0 target node
has low pressure.
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A. Approximate learning rules

Consider the flow networks described earlier. To imple-
ment the learning rule of Eq. (4), one requires pipes whose
conductance can vary in response to the dissipated flow
power through them. There are two major issues in
implementing this learning rule in a physical flow network.
First, the learning rule of Eq. (4) for the conductance on
edge j depends not simply on the power through edge j but
on the difference between the power when the free-
boundary condition and the power when the clamped-
boundary condition are applied. This is difficult to handle
experimentally because it is impossible to apply both sets
of boundary conditions simultaneously to extract the
difference. One could try to get around this by alternating
between the free- and clamped-boundary conditions during
the process, but then one runs into the difficulty that the
sign of conductance change is opposite for the two types of
boundary conditions. In other words, the same power
through edge j in the free and clamped states would need
to induce the opposite change in conductance. Alternating
the sign of the change in conductance along with the
boundary conditions poses considerable experimental dif-
ficulty. The second hurdle is that Eq. (4) requires that pipes
must be able to either increase or decrease their conduct-
ance. Pipes whose conductance can change in only one
direction (e.g., decreasing k by constriction) are presum-
ably easier to implement experimentally.
To circumvent these difficulties, we seek an appropriate

approximation of Eq. (4) (see Appendix C for more details)
that is still effective as a learning rule. We first define a
new hybrid state of the system, named the δ state, in
which the power dissipation is minimized with respect
to the hidden node pressures pH with the constraints
pS ¼ 0, pT ¼ −ηðPT − pF

T Þ.
Note that this state corresponds to constraining the

source and target nodes to the desired pressure differences
between the free and clamped states according to the
original approach. Now, we may expand the clamped-state
power in series around the free state, to obtain a new
expression for the learning rule in terms of the δ state and
free state:

_kj ≈ 2αη−1ΔpF
j Δpδ

j:

Ideally only the δ state would be involved in the learning
rule and not the free state. Let us simplify this rule by only
accounting for the sign of the free pressure drop, sgnðΔpF

j Þ,
returning �1 depending on the sign of flow in the free
state, _kj ≈ 2αη−1sgnðΔpF

j ÞΔpδ
j .

The resulting learning rule, while only depending on the
pressures at the δ state, can still induce either positive or
negative changes in k. To avoid this, we may impose a step
function, that only allows changes in one direction (e.g.,
only decreasing k):

_kj ¼ −2αη−1Θð−ΔpF
j Δpδ

jÞjΔpδ
jj: ð8Þ

The intuition behind this learning rule is relatively
simple: if for a particular pipe sgnðΔpF

j ÞΔpδ
j < 0, then

too much flow is going through the pipe in the free state.
Thus, one could improve the functional result by decreas-
ing the conductance of that pipe.
This learning rule may be simpler to implement physi-

cally, but is it a sufficiently close approximation of the
original rule? In Fig. 5 we train a network (512 nodes, with
10 random sources and 3 random targets) using the learning
rules of Eqs. (4) and (8). In Fig. 5(a), the learning rules are
compared to the tuning algorithm [Eq. (13)] by taking the
dot product of these modification [similar to Fig. 7(c)].
While the approximate learning rule has a lower dot
product with the optimal local tuning for all values of η
compared to the full learning rule, the correlations are still
very significant. We thus expect the approximate learning
rule to train the network successfully. Indeed, we find that
when the approximate learning rule is applied iteratively,
the learning process is successful, yielding a decrease of the
error C of at least an order of magnitude [Fig. 5(b)]. While
the approximate training typically plateaus at a higher error
level compared to the full coupled learning rule, the
approximate learning rule can successfully train flow
networks to exhibit random source-target responses.

B. Noise in physical or learning degrees of freedom

So far, we have assumed that coupled learning modifies
the learning degrees of freedom given precise knowledge of
the free and clamped states [e.g., PF, PC in Eq. (4)].
However, in any physical implementation of a network
there will be errors in the measurements of these states.
Suppose that measurement of the dissipated power at every

(a) (b)

FIG. 5. Training a flow network (512 nodes, 10 random
sources, and 3 random targets) with an approximate, experimen-
tally viable learning rule. (a) The full coupled learning rule
[Eq. (4)] and the approximate learning rule [Eq. (8)] are compared
to the gradient of the cost function for different values of η [see
Fig. 7(c)]. While the full learning rule is superior, there is still a
significant correlation between optimal tuning and the approxi-
mate rule. (b) The network may be trained using both the full and
approximate rule, at similar timescales. The approximate learning
rule, being much more restricted, often saturates at a higher error
level compared to the full rule (averaged over 17 random source-
target sets).
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edge is subject to additive white noise of magnitude ϵ,
noted ej ∼N ð0; ϵ2Þ. The learning rule would then contain
an extra term due to the noise:

_kj ≈
1

2
αη−1f½ΔpF

j �2 − ½ΔpC
j �2 þ ejg: ð9Þ

It is clear from Eq. (9) that if the error magnitude
ϵ is larger than the typical difference between the
free and clamped terms, the update to the conductance
values would be random and learning will fail. As
we show in Appendix B, the difference between the free
and clamped term scales with the nudge amplitude
½ΔpF�2 − ½ΔpC�2 ∼ η2. Put differently, when the nudge
is small (η → 0), the free and clamped states are nearly
identical, so that their difference is dominated by noise.
This raises the possibility that increasing the nudge
amplitude η used, i.e., nudging the clamped state closer
to the desired state, will increase the relative importance of
the learning signal compared to the noise, allowing the
network to learn despite the noise.
To test this idea, we train a flow network of N ¼ 512

nodes on a random task with 10 source and 10 target nodes
[the same training problem shown in Figs. 2(a)–2(d)].
While training, we inject white noise of given magnitude ϵ
according to Eq. (9). As suggested, we find that these
“measurement” errors primarily spoil learning at low nudge
values, so that increasing ηmight have a beneficial effect on
learning [Fig. 6(a)]. We conclude that experimental settings
with finite measurement errors induce a trade-off in the
nudge parameter η. Nudges should be small so that the
learning rule gives a good estimate of the desired gradients,
yet they cannot be too small, or the learning will be
dominated by noise.
Another source of error in an experimental realization of

learning networks may be unwanted fluctuations or drift in
the learning parameters. For example, it is known that
natural neural networks undergo synaptic fluctuations, even
in adults and in the absence of synaptic activity [34–36]. In
synthetic contexts, engineering materials with controllable

parameters in a wide range, e.g., variable stiffness in shape
memory alloys [37], can lead to an increased volatility in
these controlled parameters [38].
Drifting in the learning degrees of freedom during

the training process is expected to impede learning. To
study its effects, we assume that the learning degrees of
freedom fluctuate with some magnitude δ for all edges.
This gives rise to additive white noise dj ∼N ð0; δ2Þ in the
learning rule:

_kj ≈
1

2
αη−1f½ΔpF

j �2 − ½ΔpC
j �2g þ dj: ð10Þ

In contrast to the noise in the physical degrees
of freedom discussed earlier, such diffusion cannot be
controlled by increasing the nudge amplitude. However,
one can increase the learning rate α to hasten the learning
dynamics compared to diffusion (keeping in mind that
to maintain convergence, learning cannot be made too
fast [4]).
Once more, we train a flow network (N ¼ 512 nodes) on

a task with 10 random sources and 10 random targets [the
same task as in Figs. 2(a)–2(d)]. The network is trained
with different diffusion magnitudes δ and two different
learning rates α ¼ 0.2, 0.4. We find that given constant
diffusion rates, training is more successful at a higher
learning rate, as expected [Fig. 6(b)]. These results show
that unavoidable experimental issues such as noise in the
physical and learning degrees of freedom can be mitigated
by controlling learning hyperparameters such as the nudge
amplitude η and the learning rate α.

C. Physical relaxation

In this work, we have taken the quasistatic limit of
coupled learning, so that before computing either the free or
the clamped state, the network first reaches its stable
equilibrium (or steady state). In other words, we explored
the limit where learning is much slower than the physical
dynamics [39]. Physical networks, however, take finite time
to relax to their equilibrium, which does not scale with the
amplitude of perturbation η (in the linear response regime).
Therefore, using small nudges in general does not help with
accelerating the physical relaxation of the network toward
its equilibrium states.
Moreover, the nudging between the free and clamped

states induces a local perturbation, whose information
content must propagate to the entire network before it
can equilibrate. In both flow networks and elastic spring
networks, the time for this information propagation is set by
the speed of sound. In flow networks, the speed of sound
depends on the compressibility of the fluid. Similarly,
elastic spring networks have a finite speed of sound
depending on their node masses, edge spring constants,
and network structure. This information propagation time
implies a linear lower bound on the scaling of the relaxation

(a) (b)

FIG. 6. Learning with noisy measurements and diffusing
learning degrees of freedom. (a) When noise is present in the
free- or clamped-state measurements, small nudges impede
learning. Training results can be improved with larger η < 1
nudges. (b) Drifting in the learning degrees of freedom impedes
learning, but its effects can be mitigated by increasing the
learning rate α.
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time with system size. Depending on the physics of the
network and its architecture, relaxation time might scale
more slowly with size. For example, in large branched
dissipative flow networks the response time to a perturba-
tion scales quadratically [40].
Consider a flow or elastic network of linear dimension L,

trained by waiting time τ for relaxation before updating the
learning degrees of freedom in Eq. (6). Because of the
aforementioned considerations, training a larger network of
linear dimension L0 would require waiting τ0 ≈ τfðL0=LÞ
(withf a faster than linear function) for similar relaxation, so
that the overall training time should scale with the physical
length of the network. Note that this physical time scaling is
different from the scaling of learning convergence with
system size discussed earlier. At the limit of small enough
learning rates α, when the learning dynamics effectively
approximate gradient descent on the cost function, we argue
that rescaling the learning rate in Eq. (6) by α0 ¼ αfðL0=LÞ
would counteract this increase in training time.However, the
learning rate cannot increasewithout bound for two reasons.
First, at high learning rates, learningmay not converge as the
gradient step may overshoot the minimum of the cost
function, as is often the case in optimization problems
[4]. Furthermore, increasing the learning rate compared to
the physical relaxation rate would eventually break the
quasistatic assumption in Eq. (6). We leave the effects of
breaking the assumption of quasistaticity to future study.

IV. COMPARISON OF COUPLED LEARNING TO
OTHER LEARNING APPROACHES

To emphasize the advantages of our local supervised
learning approach, we compare it to global supervised
learning, where we adjust the learning degrees of freedom
to minimize a learning cost function (or error function).
Such a rational tuning strategy was previously demon-
strated to be highly successful [6] and is fundamental to
supervised machine learning [4]. Here we compare coupled
learning and tuning in the contexts of flow and elastic
networks.
One usually defines the learning cost function as the

distance between the desired response PT and the actual
target response pF

T . A commonly chosen function is the L2

norm (Euclidean distance):

C≡ 1

2
½pF

T − PT �2: ð11Þ

A straightforward way to minimize this function with
respect to the learning degrees of freedom (pipe conduct-
ance values fkjg) is to perform gradient descent. In each
step of the process, the source pressures fPSg are applied,
the physical cost function (total dissipated power) is
minimized to obtain the pressures fpF

Tg, the gradient of
the learning cost function is computed, and the conduc-
tances fkjg are changed according to

∂kC ¼ ½pF
T − PT � · ∂kpF

T ;

_kG ¼ −α∂kC; ð12Þ

where _kG denotes the change in the pipe conductance
predicted by the tuning (global supervised learning) strat-
egy. Note that such a process cannot drive autonomous
adaptation in a physical network—Eq. (12) cannot be a
physical learning rule—for two fundamental reasons. First,
the update rule is not local. Generally, the target pressure
pF
T depends on the conductance of every pipe in the

network, so each component of ∂kC contains contributions
from the entire network. The modification of each pipe
conductance depends explicitly on the currents through all
of the other pipes, no matter how distant they are. Second,
the tuning cost function C depends explicitly on the desired
response PT . Thus, if the network computes the gradient, it
must encode information about the desired response. A
random disordered network is not expected to encode such
information a priori. Together, these two properties of the
tuning process imply that this approach requires both
computation and the modification of pipe conductance
values by an external designer—it cannot qualify as a
physical, autonomous learning process.
The second point above, that the tuning cost function

depends explicitly on the desired behavior PT, deserves
further discussion. In coupled learning, the desired target
values PT do not appear explicitly in the learning rule of
Eq. (4), but do appear explicitly in the definition of the
clamped state [Eq. (3)]. This is a subtle but crucial
distinction between coupled learning and tuning. In
coupled learning, a trainer (supervisor) imposes boundary
conditions only on the target nodes. The physics of the
network then propagates the effect of these boundary
conditions to every edge in the network. Then, each edge
independently adjusts its learning degrees of freedom
taking into account only its own response to the applied
boundary conditions. In other words, the boundary con-
ditions, imposed by the trainer, depend on the desired
response fPTg, but the equations of motion of the pipe
conductance values fkjg themselves do not require knowl-
edge of fPTg once the boundary conditions are applied.
The trainer needs to know the desired network behavior,
but the network itself does not. In the tuning process, by
contrast, the pipe conductance values evolve according to
an equation of motion that depends explicitly on fPTg.
Thus, tuning a physical network requires external compu-
tation of ∂kC and the subsequent modification of the
learning degrees of freedom by an external agent.
The difference between local and global supervised

learning has fueled long-standing debates on how biologi-
cal networks learn, and their relation to computational
tuning approaches such as machine learning algorithms
[41]. While natural neural systems are complicated and can
perform certain computations, simple physical networks
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such as the ones studied here definitely cannot. In order for
these networks to adapt autonomously to external inputs
and learn desired functions from them without performing
computations, we need a physically plausible learning
paradigm such as the coupled learning framework pre-
sented here.
We now directly compare results of the two learning

methods in flow and elastic networks. First, we use both
methods to train flow networks of size N ¼ 512 nodes on
the tasks described in Sec. II A [Fig. 7(a)]. We find that, on
average, coupled learning is as efficient as tuning (gradient
descent) for training these networks. Indeed, for the
problem shown in Fig. 2(d), coupled learning actually
converges faster than tuning.
To explore the comparison further, we denote the

conductance modification prescribed by coupled learning
as _kCL [Eq. (4)] and the conductance modification dictated
by global supervised learning, or tuning, as _kG [Eqs. (11)
and (12)]. We argue theoretically in Appendix B that
coupled learning leads to modifications to the learning
degrees of freedom kj that are similar to those obtained by
tuning using gradient descent [Eq. (12)]. Therefore, we
compare the two modification vectors directly by taking a
dot product between them (after normalization):

_kCL ∼ ∂kfPF − PCg;
_kG ∼ −∂kC: ð13Þ

These two modification vectors are compared in
Figs. 7(b)–7(d) for flow networks with N ¼ 512 nodes,
trained with 10 random sources and varying numbers of
random targets. Most notably, we observe that the two
vectors are indeed nearly identical (the dot product of the
normalized vectors is close to unity) for sufficiently small
nudges η [Fig. 7(c)]. This is remarkable as the vectors
reside in the very high (∼1000) dimensional space of
conductance values k of the network. Thus Fig. 7 shows
that the local process of coupled learning follows a
trajectory in conductance space that is very similar to
the trajectory followed during rational tuning, which is a
global supervised learning process [although we do note
fluctuations in the dot product; see the enlarged scale in
Fig. 7(b) and Appendix D]. For small nudges η≲ 0.1,
we observe a plateau in this dot product, so the precise
choice of η is not important [choosing small η → 0 leads to
a well-defined limit of the coupled learning rule of Eq. (13);
see Appendix B]. On the other hand, choosing large η ∼ 1
(as in Hebbian contrastive learning) leads to significant
differences between the two processes. We also note that
for more complicated functions (more targets to satisfy),
the dot product slightly decreases. This effect is exhibited
in Fig. 7(d) for networks of two sizes. However, even with
extra functional complexity, coupled learning yields results
that are remarkably similar to tuning.

Unlike flow networks, elastic spring networks are
fundamentally nonlinear, so it is interesting to explore
whether coupled learning produces similar modifications to
the learning degrees of freedom as tuning (gradient
descent). In Figs. 7(e) and 7(f), we show the alignment
between the coupled learning and tuning. We find that the
alignment between these modification vectors is still very
significant, especially for training with the stiffness degrees
of freedom kj. We further find that the alignment is reduced
during training as the network approaches low-error sol-
utions, in particular for training the rest lengths lj. While

(c) (d)

(e) (f)

(a) (b)
Linear flow networks

Nonlinear spring networks

FIG. 7. Coupled learning (local supervised learning) compared
to tuning (global supervised learning) in linear flow and nonlinear
elastic networks. (a) Direct comparison between training traces in
flow networks shows that coupled learning is as successful as
gradient descent. (b) The dot product of the modification vector
Δk for coupled learning and tuning (gradient descent) during
training undergoes fluctuations, yet remains high. (c) At the
beginning of training, we compute the dot product of the
modification vector Δk for coupled learning and tuning as a
function of the nudge variable η for systems with 1 (red triangles),
3 (blue diamonds), and 10 (black crosses) target nodes. The two
methods predict very similar results for η ≪ 1. (d) For η ¼ 10−3,
coupled learning yields similar results to tuning for networks with
N ¼ 512 (black circles) and N ¼ 1024 (blue squares), as a
function of the number of target nodes. (e),(f) Dot product
between the normalized predictions of coupled learning and
gradient descent in nonlinear elastic networks. We find that
coupled learning and gradient descent are largely aligned during
the training of elastic networks using the stiffness and rest lengths
degrees of freedom (N ¼ 512, 1024, MS ¼ 10, MT ¼ 3).
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this result is interesting and suggests that coupled learning
may differ significantly from tuning in certain nonlinear
networks, we note that training the network is successful
regardless of the deviation between the methods. We leave
more detailed exploration of the alignment between pos-
sible local learning rules to future study.
A physical learning process called “directed aging” has

recently been introduced to create mechanical metamate-
rials from mechanical networks [9–11] and self-folding
sheets [13]. The strategy exploits the idea that stressed
bonds in elastic networks tend to weaken (age) over time.
During training, the network is nudged in a similar fashion
to the coupled learning process. References [9,10] consider
two different classes of learning degrees of freedom in
central-force spring networks. In one case, the “k model,”
the stiffnesses kj of the springs are modified, while in the
“lmodel” rest lengths l0;j are modified. The clamped state
can correspond either to Eq. (5) with η ¼ 1 or to a
periodically varying amplitude η ¼ sinΩt. In the latter
case, the oscillation is performed quasistatically in the
sense that the physical degrees of freedom are relaxed
completely at each time step.
In elastic networks, the directed aging k-model and

l-model learning rules are

_kj ¼ −
α

2
½rCj − lj�2;

_lj ¼ −αkj½rCj − lj�; ð14Þ

where the learning degrees of freedom (stiffness or rest
length) evolve in response to the clamped boundary
conditions. Such dynamics have the effect of lowering
the elastic energy of the desired state, and thus the response
of the network to the specified inputs is expected to
improve. Indeed, directed aging was shown to be successful
in training elastic networks with nearly marginal co-
ordination, so that they lie just above the minimum number
of edges per node (Zc ¼ 2d) required for mechanical
stability in d dimensions. Note that because the clamped
physical cost function EC can be written as a sum over
individual costs of edges j, the directed aging rule is local
as it is for coupled learning. Directed aging therefore
corresponds to a physical learning rule, as has been
demonstrated experimentally [9].
However, directed aging fails to achieve the desired target

response in many instances. In particular, it is observed that
either flow networks or highly coordinated elastic networks
cannot be trained by directed aging to perform allosteric
functions.Comparing directed aging [Eq. (14)]with coupled
learning [Eq. (7)],we see that theclamped termsare the same,
but the directed aging rule is missing the free term. As a
special caseof coupled learning,directedaging is expected to
performwell in systemswhose energy in the free state (or its
derivative) can be neglected. Appendix B shows that in
general both the free andclamped termsare necessary to train

networks for desired functions. Therefore, coupled learning
can be viewed as a generalization of the directed aging
framework that is successful for a more general class of
physical networks.

V. DISCUSSION

In this work we have introduced coupled learning, a class
of learning rules born of contrastive Hebbian learning and
equilibrium propagation [15,18], and applied it to two types
of physical systems, namely flow networks and mechanical
spring networks. The advantage of such supervised learn-
ing rules, compared to more traditional techniques such as
optimization of a cost function, is that they are physically
plausible; at least in principle, coupled learning can be
implemented in realistic materials and networks, allowing
them to learn autonomously from external signals.
Such learning machines are not only interesting in

themselves, but may have important advantages compared
to physical systems designed by optimizing a cost function.
First, because the process involves local responses to local
stresses, the approach is scalable—training steps in net-
works of different sizes (different numbers of nodes) would
take approximately the same amount of time. In contrast,
the time required to compute gradients of a collective cost
function increases rapidly with system size.
Second, the ability to train the system in situ means

that it is not necessary to know the network geometry or
topology, or even any information about the physical
or learning degrees of freedom. This is particularly
valuable for experimental systems, which do not have to
be characterized in full microscopic detail in order to be
trained, as long as the proper learning rules can be
implemented, at least in an approximate form.
Third, as long as the learning rules can be implemented,

one does not need to manipulate individual edges to
have the desired values of the learning degree of freedom
(e.g., theedgeconductancefora flownetwork).Thus, therole
of the supervisor can be filled by an end user, training the
network for theirdesired tasks, rather thananexpert designer.
An experimental realization of a learning flow network

seems quite plausible, as has also been suggested for analog
resistor networks [22]. The required ingredients are pipes
whose conductances can be modified in response to the
current carried by the pipe. It is possible that this condition
is similar to that used by the brain vasculature, where
vessels can be expanded or constricted [42,43].
We have focused primarily on training physical networks

for one particular function (i.e., one particular source-target
map, namely, allostery). However, coupled learning rules
may be used as a stochastic gradient descent step, training
the network for a different function in each training
iteration. This idea allowed us to train the flow network
to distinguish MNIST digits. The dynamics of learning
multiple functions using coupled learning is quite involved,
and the training performance may depend strongly on the
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order and frequency of shown training examples. We will
address these issues in subsequent work.
One might ask whether physical networks could com-

pete as learning machines with computational neural net-
works. Our aim is not to outperform neural networks.
Rather, the goal is to design physical systems capable of
adapting autonomously to tasks and able to generalize to
diverse inputs without a computer. Nevertheless, physical
networks do supply at least one potential advantage
compared to computational neural networks. In contrast
to feed-forward neural networks often used in machine
learning, the input-output relations in our physical (recur-
rent) networks are necessarily symmetric in the linear
response regime (the regime in which the target response
is proportional to the source). As a result, training target
responses for given sources may yield a generative model
[44,45]. Such generative models could produce examples
of a class given its label by imposing target values
distributed around the trained responses, and reading out
the free source values. We leave the prospects of physical
learning of generative models to future study.
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APPENDIX A: NUDGE AMPLITUDE η

In the main text we used local learning rules based on the
difference between the free state and a slightly nudged
clamped state (η ≪ 1). We showed how choosing η ≪ 1 in
flow networks allows the learning rule to mimic the
optimization of a global cost function [Fig. 7(c)], and
we discuss that further in Appendix B.
Here we argue that choosing large nudge amplitudes

η ∼ 1, as suggested by contrastive Hebbian learning [15],
can adversely affect learning in physical networks, par-
ticularly in nonlinear networks (e.g., mechanical networks).
The choice η ≪ 1 implies that the clamped state is

almost identical to the free state. Inspecting Eq. (4) or
Eq. (7), we see that the learning rule essentially becomes a
derivative of the energy function with respect to the
physical variables, in the direction toward the desired state.

Thus, the learning rule is in fact a derivative of the energy in
both spaces, those of the physical (e.g., pressure values)
and learning degrees of freedom (e.g., pipe conductances).
The choice η ≪ 1 implies a local modification of the
system not only in the spatial sense (so that only nearby
elements communicate), but also in the generalized energy
landscape of the combined configuration space of physical
and learning parameters.
Conversely,choosingalargenudgeamplitudeη ∼ 1means

thefreeandclampedstatescanbefarawayfromeachother, so
that the learningruledoesnotapproximate thederivativevery
well. This may be particularly important in nonlinear net-
workswhoseenergylandscape isnonconvex. Insuchcases, if
the free and clamped states are far apart, they may belong to
different attractor basins in the landscape, possibly impeding
the learning process, since it is not guaranteed that the
learning rule can eliminate energy barriers between the
two states. This problem has been long recognized as a
limitation of contrastiveHebbian learning [15], and has been
solved by using a small nudging factor [18].
We thus argue for the benefit of choosing small nudges

η ≪ 1. To test this proposal, we observe the learning
process in flow networks and mechanical networks with
different choices of η (Fig. 8). We trained flow networks

FIG. 8. Effects of nudge amplitude η on learning. (a) 512 node
flow networks trained with 10 random source nodes and 3 target
nodes. As the nudge amplitude η is increased, training gradually
and continuously becomes slower. (b) Trained flow networks
(after 2 × 103 time steps) perform better if trained with small
nudges. (c) When learning is attempted in nonlinear mechanical
networks using the l rule, a similar picture emerges on average,
where learning degrades at higher η. Moreover, at particular
realizations, we observe noncontinuous degradation of the
learning process at particular values of η (inset). (d) On average,
learning performance is largely maintained until η ∼ 1. In one 512
node network, trained with 10 random sources and 3 random
targets, training is relatively stable until η ≈ 0.6, and then goes
thorough a discontinuous jump (inset). Averaged data results
from 17 realizations of learning problems.
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(with 512 nodes, 10 sources, and 3 targets) with varying
values of the nudge parameter η [Figs. 8(a) and 8(b)]. It is
generally found that choosing small nudge values η ≪ 1
leads to better learning performance. The learning process
is faster for lower η, so that after a fixed training time, the
accuracy of networks trained with small η is better. When η
is raised gradually, we find that the learning process is
gradually and continuously slowed down.
Changing the nudge amplitude for nonlinear networks,

such as a mechanical spring network [Figs. 8(c) and 8(d)]
can lead to qualitatively different results. In one network
of 512 nodes [trained with the l-learning rule of Eq. (7),
10 random sources and 3 random targets], we find a
discontinuous behavior at η ≈ 0.6. At lower values we
observe similar behavior to a linear flow network, but at
higher η learning is abruptly slowed down by orders of
magnitude. As discussed above, this effect likely stems
from the issue that for this learning problem, the initial
free state and the desired states belong to different
attractor basins in the network energy landscape. Thus,
when η is large enough, the free and clamped states
belong to different basins, significantly slowing down the
learning process. That being said, these nonlinear net-
works can still learn with large nudges η ∼ 1, reaching
low-error values.
We conclude that choosing small nudge values η ≪ 1

yields superior results when training our networks. Such
choice leads to consistent and continuous learning in both
linear and nonlinear networks, as the learning rule best
approximates the gradient descent on the desired cost
function (see Appendix B). When choosing large nudges
η ∼ 1, learning efficiency usually deteriorates, and we
observe interesting dynamical effects such as intermittent
unlearning events. We will address the dynamics of large
nudges in future work.

APPENDIX B: EFFECTIVE COST FUNCTION

In the main text we established that the coupled learning
rule trains networks to present desired source-target rela-
tions. Surprisingly, the local learning rule predicted by our
framework is very similar to the global modification
resulting from minimizing a cost function. This result is
very encouraging, as it shows that physically plausible,
local learning rules can give rise to comparable training as
nonlocal gradient descent, which is the ultimate greedy
training strategy. In this Appendix, we explain this surpris-
ing similarity by deriving an effective cost function from
our learning rule.
As discussed in the main text, the network autonomously

modifies its edge parameters w by subtracting the energies
of free and clamped states and taking a derivative:

_w ∼ ∂wfEFðxS; xFT ; xFHÞ
− ECðxS; xFT þ η½XT − xFT �; xCHÞg: ðB1Þ

Here, we expanded the notation of the main text to
include the free and clamped states of all the hidden nodes
xH. Given a small nudge parameter η ≪ 1, the clamped
state is very similar to the free state, and we can approxi-
mate the clamped state using a Taylor expansion around the
free state. In particular, let us write the clamped state of the
hidden nodes as xCH ≡ xFH þ ηΔxH, with the shift ηΔxH a
vector of magnitude ∼η. Further, we define the signed
error in the target signal ϵT ≡ XT − xFT . Concatenating the
source, target, and hidden nodes together, the difference
between the free and clamped state can be written as

Δx≡ ðxCS − xFS ; x
C
T − xFT ; x

C
H − xFHÞ ¼ ηð0; ϵT;ΔxHÞ:

Now, we can approximate the energy of the clamped
state EC as

EC ≈ EF þ ηð0; ϵT;ΔxHÞ∇xEF

þ 1

2
η2ð0; ϵT;ΔxHÞT

∂2EF

∂x∂x ð0; ϵT;ΔxHÞ: ðB2Þ

By definition of the free state, it is a stable equilibrium
state of the physical network, so that the first-order term
vanishes, ∇xEF ¼ 0. The second derivative in the second-
order term is the Hessian at the free state HF. Thus the
Taylor expansion simplifies to

EC ≈ EF þ η2

2
ð0; ϵT;ΔxHÞTHFð0; ϵT;ΔxHÞ: ðB3Þ

This result can be plugged back into the learning rule of
Eq. (B1) to obtain

_w ∼ −
η2

2
∂wð0; ϵT;ΔxHÞTHFð0; ϵT;ΔxHÞ: ðB4Þ

As discussed in the main text, a typical tuning algorithm
starts by defining a cost function C≡ ϵ2T ¼ ϵTTIϵT , with I
the identity matrix. This cost function is minimized via
gradient descent:

_wG ∼ −∂wC: ðB5Þ
Comparing Eqs. (B4) and (B5), we may identify an

effective cost function minimized by our learning rule:

C ∼ ϵTTIϵT;

Ceff ∼ ð0; ϵT;ΔxHÞTHFð0; ϵT;ΔxHÞ: ðB6Þ
While the effective cost function we derived is not

identical to the standard cost function, they share important
properties. First, both functions are convex (square forms)
in the difference between the desired and the obtained result
ϵT . Both functions are bounded from below by 0, as the
Hessian of the stable free state is positive semidefinite.
The two cost functions vanish if and only if the obtained
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targets are equal to the desired targets xFT ¼ XT . Note that
this is true since at ϵT ¼ 0, ΔxH vanishes as well. Overall,
we know that a global minimum of Ceff must be a global
minimum of C. The effect of the Hessian matrix close to
that minimum is mostly to stretch and rotate the paraboloid
cup implied by the square form. When comparing the two
cost functions, we also find that their gradients are aligned
to significant extents as shown in Fig. 7. While this
alignment is not guaranteed and is affected by many factors
(e.g., network physics and architecture, number of targets,
error values, etc.), the fact that both cost functions share the
same minima means that coupled learning will tend to find
solutions that minimize the original cost function too. We
conclude that minimizing Ceff should mimic the minimi-
zation of C, at least close enough to a minimum of C, as is in
fact observed.
Recently, it was shown [22,23] that using a nudged state

that applies a “force” on the output nodes, rather than
clamping their values as done here, implies that the
effective cost function approaches the original cost function
C for small nudge amplitudes η → 0.

APPENDIX C: EXPERIMENTALLY FEASIBLE
LEARNING RULE FOR FLOW NETWORKS

As discussed in the main text, implementing the full
coupled learning rule of Eq. (4) in an experimental setting
may prove difficult. One would need to implement pipes
that can adapt in opposite ways to the same flows,
depending on if the system is set in the free or clamped
state. To simplify this learning rule for better experimental
feasibility, we start by considering the full rule for
conductance adaptation:

_k ∼ f½ΔpFðpS; pF
T Þ�2

− ½ΔpCðpS; pF
T þ η½PT − pF

T �Þ�2g: ðC1Þ

Recall that Δp is a vector of pressure differences across
all pipes. It may be replaced by the difference of pressures
in the two nodes connected by the pipe Δp≡ p2 − p1. We
can use this form in Eq. (C1) to obtain:

_k ∼ f½pF2 − pF1 �2 − ½pC2 − pC1 �2g
¼ ðpF1 − pC1 ÞðpF1 þ pC1 Þ þ 2pC1 p

C
2

þ ðpF2 − pC2 ÞðpF2 þ pC2 Þ − 2pF1 p
F
2 : ðC2Þ

Now, we define the difference between the free
and clamped states as δpμ ≡ pFμ − pCμ , with μ the node
index. If we choose a small nudge parameter η ≪ 1, the
free and clamped states are almost identical, such that
pFμ ≈ pCμ → jδpμj ≪ jpFμ j. Using the proximity of the free
and clamped states, we can approximate Eq. (C2):

_k ∼ 2½δp1pF1 þ δp2pF2 − pF1 p
F
2 þ ðpF1 − δp1ÞðpF2 − δp2Þ�

≈ 2ðδp1 − δp2ÞðpF1 − pF2 Þ: ðC3Þ

Going back to the notation of pressure drops across
pipes, we can write Δpδ ≡ δp1 − δp2, supporting the
definition of the δ state as described in the main text.
The approximated learning rule can thus be rewritten as

_k ≈ 2αη−1ΔpFΔpδ: ðC4Þ

As long as we pick η ≪ 1, this approximation is very
accurate. To make this learning rule more experimentally
feasible, we further approximate it so that only the sign
of ΔpF is accounted for, and the conductances change in
only one direction, yielding Eq. (8). Finally, we note that
while this approximation is derived specifically for linear
flow networks, the derivation may be similar for diverse
physical networks, as long as the energy of an edge is (to
first approximation) proportional to the difference in
“activation” between the connected nodes. For example,
similar approximation could be derived for both the k and l
learning rules in elastic networks [Eq. (7)].

APPENDIX D: NON-NEGATIVE LEARNING
PARAMETERS

In this work we introduced coupled learning, a super-
vised learning framework for physical networks. Using
coupled learning, one can derive the relevant learning rules
(i.e., the proper dynamics for modifying the learning
degrees of freedom). The systems demonstrated in this
work, flow and elastic networks, are special examples.
However, the learning degrees of freedom in both examples
have a shared physical limitation: The conductance of pipes
in a flow network, as well as the stiffness and rest lengths
of springs in an elastic networks, are all defined as non-
negative quantities. This is a similar issue to the non-
negativity of synaptic connection strengths in natural neural
networks [46].
Because of this physical limitation of the networks we

considered, their capacity to learn arbitrary mappings between
the sources and targets is limited. For example, while linear
flow networks will always give rise to a linear mapping
between the pressures at the sources and targets, the non-
negativity limitation excludes many conceivable linear map-
pings, depending on the geometry of the network and source
pressures. Therefore, we expect that a linear flow network
would generally be less successful than a general linear model
(i.e., linear regression) in learning certain desired tasks.
While several possible approaches for circumventing this

issue have been proposed [47,48], here we discuss the
effect of such non-negativity limitation on the learning
process in our physical networks. To avoid negative values
in the learning degrees of freedom, we simply cut off their
values at a small number (e.g., k ≥ 10−6 in flow networks).
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We find that training the networks often causes a fraction of
the learning parameters to reach these small cutoff values.
This may significantly affect learning for two reasons. First,
the magnitude of modification to the learning parameters is
reduced, so that learning may fail or slow down. Second,
the modification of the learning parameters becomes less
aligned with the gradient of the cost function.
In Fig. 9, we again directly compare coupled learning

and tuning (gradient descent) for training of flow networks,
as shown in Fig. 7. However, in this example (N ¼ 512,
MS ¼ 10, MT ¼ 10), learning “fails,” so that the initial
error is only reduced by a factor of 3. It is important to note
that the failure is shared by both coupled learning and
gradient descent, hinting that the problem is not in the
learning rule, but rather in the network physics or archi-
tecture. Indeed, the inset of Fig. 9(a) shows that as training
proceeds, a few percent of the edges vanish, with their
conductance values reaching the minimal cutoff. In
Fig. 9(b), we average the fraction of vanishing edges over
10 training examples to show that harder training problems
(with more simultaneous targets) often lead to a larger
fraction of vanishing conductance values. One may ask
whether this vanishing of edges causes problems for

training. In Figs. 9(c) and 9(d), we find that learning slows
down considerably with an increasing number of removed
edges for tasks with the same number of targets (MT ¼ 5),
regardless of whether training is performed using our
coupled learning approach or tuning (gradient descent).
Note that the gradient descent case trains faster because we
consider a much smaller N ¼ 64 network [see Figs. 2(e)
and 2(f)]. Together with Fig. 9(b), these results suggest that
it is the physical constraint of non-negative learning
degrees of freedom that slows down learning, not the
coupled learning protocol itself.
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