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Complex networks encountered in biology are often characterized by significant structural diversity. Whether
due to differences in the three-dimensional structure of allosteric proteins, or the variation among the microscale
structures of organisms’ cerebral vasculature systems, identifying relationships between structure and function
often poses a difficult challenge. Here we showcase an approach to characterizing structure-function relationships
in complex networks applied in the context of flow networks tuned to perform specific functions. Using persistent
homology, we analyze flow networks tuned to perform complex multifunctional tasks, answering the question of
how local changes in the network structure coordinate to create functionality at the scale of the entire network. We
find that the response of such networks encodes hidden topological features—sectors of uniform pressure—that
are not apparent in the underlying network architectures. Regardless of differences in local connectivity, these
features provide a universal topological description for all networks that perform these types of functions. We
show that these features correlate strongly with the tuned response, providing a clear topological relationship
between structure and function and structural insight into the limits of multifunctionality.
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I. INTRODUCTION

“Tuning by pruning” [1–3] has recently been demonstrated
to provide an efficient means of designing systems that exhibit
various complex behaviors observed in biological networks.
For example, by simply removing and/or adding small num-
bers of edges, mechanical networks can be tuned to exhibit
responses reminiscent of allostery in proteins [4–8]. Similarly,
flow networks can be tuned to direct enhanced flow to speci-
fied regions [9]. Indeed, mechanical and flow networks have
been shown to be remarkably tunable, with the ability to sup-
port highly complex, multifunctional tasks [9]. The cerebral
vasculature provides the most striking inspiration for tuning
multifunctional flow networks: by dynamically contracting
and dilating blood vessels, the brain actively controls blood
flow to support local neuronal activity on demand [10,11]. The
impairment of this ability has been linked to various neurolog-
ical diseases [12], including Alzheimer’s disease in particular
[13]. More generally, the ability to tune the conductances
of edges or locally restructure connectivity enables animals
[14,15], plants [16,17], fungi [18], and slime molds [19] to
control the spatial distribution of water, nutrients, oxygen, or
metabolic byproducts.

Understanding how proteins accomplish allostery or how
vascular networks redirect flow–or more precisely, under-
standing how the underlying network structure enables
function–remains unclear. The observation that networks with
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different structures can be tuned to perform the same function
makes it particularly apparent that we do not yet understand
how local changes to the network in the form of altered edge
properties can combine to produce functionality. For protein
allostery or vascular flow, the task is even more difficult due
to the limited supply of experimental data and the difficulty of
acquiring data of sufficiently high quality. The development
of general theories has additionally been impeded by broad
structural variation encountered in such systems, whether it be
structural differences among different allosteric proteins [20],
or variation in the microscale vasculature of the brain [21].

The ability to easily design functional systems, at least on
the computer and in the laboratory at a macroscopic scale
[4], raises the possibility of using large statistical ensem-
bles of such systems to rigorously explore the relationship
between structure and function. Even with access to large
amounts of data, however, there is an additional hurdle. It
has not been clear precisely how to connect microscopic
information about network structure (node connectivity and
edge stiffness/conductance in mechanical/flow networks) to
the collective phenomenon that is the function–the ability to
direct a desired strain or pressure drop to a given local region
or regions. To connect microscopic structure to macroscopic
function, the immense amount of data available from designed
ensembles of networks must be reduced to a form that can be
used to quantitatively and usefully compare different struc-
tures that perform analogous functions.

Here we focus on flow networks as the simplest type of
network that can be tuned to perform functions. We present
a set of techniques derived from topological data analysis,
specifically persistent homology, that allow for a systematic
and physically interpretable characterization of multifunc-
tional flow networks. We find that the structure-function rela-
tionship is topologically encoded in the response [22]. As we
will demonstrate here in detail, a multifunctional response can
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be achieved by partitioning the network into several distinct
sectors of relatively uniform pressure, even as the underlying
network architecture remains highly interconnected. It is the
connectivity, or topology, of these sectors that determines
the function, rather than that of the actual nodes. Despite its
simplicity, this interpretation provides a unifying topological
description of all networks tuned for the same function, re-
gardless of the underlying network architecture, along with a
quantitative means to compare functional or multifunctional
networks. We demonstrate that this description is robust even
for very modest tuned responses and allows us to place an
approximate analytical bound on the limits of task complexity.

The outline of this work is as follows. In Sec. II, we
start by describing the process we use to create functional
flow networks. In Sec. III, we observe that networks tuned to
extreme limits display a clear relationship between structure
and function mediated via the response. Based on this insight,
Sec. IV describes in detail how persistent homology can be
applied to characterize of the response of such networks. Us-
ing this analysis, we provide evidence that features analogous
to the sectors observed the extreme case can also exist in less
extreme cases. Next, in Sec. V, we describe a topological
coarse-graining procedure which we then use to extract the
sectors identify by the persistence analysis. Finally, in Sec. VI,
we exploit our ability to tune ensembles of networks to exhibit
the same function or functions to show that the differences
between the median node pressures in the sectors, identified
for each network in our ensemble, correspond to the tuned
pressure differences at the target edges. This result shows
unambiguously that the topological relationships (connectiv-
ities) of the sectors identified by our analysis capture the
relationship between structure and function.

II. DESIGN OF FUNCTIONAL FLOW NETWORKS

To reveal the structure-function relationship of tuned flow
networks, we start by designing ensembles of such networks
that each perform a given function, varying in complexity
from the response of a single site to the collective response
of several sites within a single network. We first create a
collection of randomly generated networks and then tune each
to perform a specific task by adjusting the conductances of its
edges.

More specifically, we consider flow networks (or equiva-
lently, resistor networks) in which edges between nodes rep-
resent pipes (linear resistors). In this framework, the response
of a network to external stimuli, described by a set of pressures
(voltages) on the nodes, is governed by a discrete version of
Laplace’s equation equivalent to Kirchhoff’s equations (see
Appendix A for details). We derive our flow networks from
the contact networks of randomly-generated two-dimensional
configurations of soft spheres with periodic boundary condi-
tions, created using standard jamming algorithms (for three-
dimensional networks, see Ref. [22]). Flow networks are
extracted from these configurations by placing nodes at the
centers of each sphere and edges—with associated fluid con-
ductances (inverse resistance)—between nodes corresponding
to spheres that overlap. We assign a conductance value to each
edge, chosen randomly from the range 0.1 to 1.0 in discrete
increments of 0.1. We choose this ensemble because it pro-

FIG. 1. [(a) and (b)] Comparison of two flow networks with dif-
ferent initial and final structures tuned to perform the same function.
In both examples, when a unit pressure difference is applied across
the source nodes (shown in red), a single target composed of a pair of
nodes (shown in green) responds with a pressure difference of � =
0.2. The relative positions of the source and target have also been
chosen to be similar. [(c) and (d)] A similar comparison of two flow
networks tuned to perform the same function, but with six targets
tuned to � = 0.2. In all cases, the pressures on the nodes are shown
in black where the symbol denotes the sign of the pressure and the
size denotes the magnitude. The thickness of the edges corresponds
to the conductance. Edges that are shown as thick dashed blue lines
have been entirely removed (set to zero conductance) in the process
of tuning.

vides initial networks reminiscent of those seen in biological
venation networks: at small length scales, many natural flow
networks are disordered [21], have high numbers of closed
loops [23], and are highly interconnected [24].

Next, we tune each flow network to perform a specific
function. In the simplest case, the response is described by a
single function; we tune the pressure difference of a specified
“target” edge to respond by at least an amount � (chosen to
be non-negative) when a unit pressure difference is applied
across a separate specified “source” edge. A multifunctional
task consists of a number of specified target edges, labeled
by the index i, tuned to respond with a pressure difference of
at least �i when a unit pressure difference is applied across
the source edge. In this paper, we focus on the case where
�i = � is the same for each target edge. For each network
in the ensemble, the source and target edges are chosen at
random such that they do not share any node. To achieve
the desired target pressure difference of at least � across
the target edges, we use a greedy algorithm: in each step we
increase or decrease the conductance of a single edge by 0.1
(staying within the range 0 to 1, inclusively), modifying the
edge conductance that best optimizes the total response at that
step (for further details concerning network generation and
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FIG. 2. [(a) and (b)] The flow networks from Figs. 1(a) and 1(b) tuned to the maximum possible pressure difference of � = 1.0. In the
� = 1.0 limit, the networks clearly splits into two components of uniform node pressure, separated by a boundary of pressure difference equal
to one. [(c) and (d)] The flow networks from Figs. 1(c) and 1(c) tuned to target pressure differences of � = 0.5 and 0.33, respectively. In these
cases, the networks divide into more than two sectors of almost perfectly uniform node pressures. (First row) The pressures on the nodes are
shown in black where the symbol denotes the sign of the pressure and the size denotes the magnitude. The thickness of the edges corresponds
to the conductance. Edges that are shown as thick dashed blue lines have been removed in the process of tuning. (Second row) The absolute
value of the pressure differences are shown on a logarithmic scale from white to blue.

tuning, see Appendix B, along with Ref. [9] and similar work
on mechanical networks in Ref. [4]).

Even for these simple functions, the discrepancy between
structure and function is readily apparent. Figures 1(a) and
1(b) show examples of two different networks that have been
tuned to perform the same function, namely to have a single
target edge with the same target pressure difference of � =
0.2 relative to the source (The relative positions of the source
and target have been chosen to be the same for visual clarity,
although this is not required for two networks to be defined to
perform the same function). The spatial distributions of edge
conductances and pressures in the networks are noticeably
different while it is unclear whether the underlying architec-
tures of the two networks share anything in common. This
disconnect is even more apparent when comparing Figs. 1(c)
and 1(d). In these cases, each network has six separate target
edges that have each been tuned to display a target pressure
difference of at least � = 0.2.

III. MAXIMUM TUNING LIMIT

It is illuminating to first examine networks tuned for a sin-
gle function, where the pressure difference at the single target
edge reaches the extreme limit where � = 1, the maximum
achievable pressure difference. Figures 2(a) and 2(b) show the
networks from Figs. 1(a) and 2(b), respectively, but instead

tuned to � = 1. In both cases, the networks clearly separate
into two distinct sectors of perfectly uniform node pressure,
connected only by a single edge between the source nodes.
These two regions are separated by a crack-like structure with
pressure differences of precisely 1.0 along edges that have
been removed during the tuning process. Figures 2(a) and 2(b)
reveal that the structural changes in the network architecture
are purely topological in terms of the connected components:
all edges connecting the two sectors are removed (excluding
those connecting the source nodes, which could be removed
with no change in the response), increasing the number of
connected components from one in the initial network to two
in the functional network. Clearly, the exact details of the local
structure (which specific edges are modified/removed) do not
matter as long as this partitioning takes place. In this extreme
case, the relationship between structure and function is obvi-
ous: the existence of the two separate connected components
of the network, each associated with one source node and one
target node, allows the desired target pressure difference to
be achieved. It is intuitively clear that this description should
extend to all networks tuned to this same extreme limit, since
adding any extra links between the two sectors would allow
current to flow between them and necessarily decrease the
pressure difference.

Similarly, Figs. 2(c) and 2(d) depict the multifunctional
networks from Figs. 1(c) and 1(d), now tuned to exhibit larger
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pressure differences of � = 0.5 and 0.33, respectively. In
Fig. 2(c), the network separates into three sectors of almost
perfectly uniform node pressure, while in Fig. 2(d), the net-
work splits into four sectors. These cases are analogous to
the extreme � = 1 case for single function networks as the
pressure differences at the targets cannot be increased in these
networks without reducing the number of sectors (we address
this behavior in more in Sec. VII). Any description we develop
should also be able to characterize multifunctional networks
such as these that separate into more than two sectors.

These results show that (i) it is not the structure of the net-
work that is important, but rather the structure of the response
of the network when a source pressure drop is applied, and
(ii) the aspect of the structure of the response that relates to
the function is a topological one, namely the separation of the
network into essentially disconnected sectors.

The challenge arises when � is less than its extreme value
[for example, � < 1 for the case of a single target edge, as
in Figs. 1(a) and 1(b)]. In these cases, the entire network is
highly interconnected so that effectively disconnected sectors
do not exist, and it is unclear how to apply the insight gained
from the extreme � = 1 case. In the following sections, we
show how persistent homology can be used to analyze the
response of these networks, providing a means to extend the
sector description to networks tuned for any �.

IV. TOPOLOGICAL SIGNATURE OF TUNING

At its core, the process of tuning networks is local; it in-
volves modifying the conductances of individual edges. How-
ever, the extreme examples of Fig. 2 show that coordinated,
large-scale topological changes in the structure and response
can arise from local edge tuning. To see if remnants of these
topological changes are present when a network is still highly
interconnected, we use persistent homology, a technique that
can detect and assign significance to the topological features
of geometrically and/or topologically structured data [25,26].
In this case, our data consist of the pressure response of
tuned networks, along with the connectivities of the nodes
and edges. In general, the types of topological features the
persistence algorithm can detect include connected compo-
nents, loops, voids, etc. For flow networks, only the first two
feature types are relevant. Since the network partitions into
unconnected sectors in the extreme case for � = 1 (analogous
cases for multi-target responses), we focus only on the first
class of topological features, the connected components. In
the past, the persistence algorithm (or related techniques) has
been used to study various topological aspects of flow net-
works [27,28], along with their higher-dimensional analogs,
mechanical networks [29,30]. However, these studies have
focused on the network structure, rather than the response of
such systems.

To apply the persistence algorithm, one needs an order-
ing of the network elements (vertices, edges) in terms of a
quantity defined on the particular elements that are relevant
to the tuned function. An obvious candidate is the pressures
on the nodes. However, the network response obeys a dis-
crete version of Laplace’s equation whose solutions satisfy
the maximum principle. Informally, this means that local
minima and maxima in the node pressures can only occur at

the source. As a result, there can only be a single (global)
minimum on one of the source nodes, and a single (global)
maximum at the other source node. Since local extrema
play an important role in defining topological features, their
absence means that very few interesting features would be
detected by the persistence algorithm (in fact, we would only
detect a single connected component corresponding to the two
global extrema at the source nodes). We therefore define our
ordering on the edges instead of the nodes, sorting each edge
according to the absolute value of the difference in pressure
between its nodes. Given a network with NE edges, we label
each edge with an integer i according to this order, with 1 �
i � NE , and denote its corresponding pressure difference as
�pi. Figure 3(a) shows an example of a small tuned network
with the corresponding ordering of its edges illustrated in
Fig. 3(b).

We then proceed as follows: starting with an empty net-
work with no edges, we add each edge to the network in
order of its pressure difference, one at a time. With each
step i, we obtain a larger subset of our original network,
consisting of the first i edges. This sequence of sub-networks
corresponds to a filtration of the pressure differences on our
original network. In the “ascending filtration,” we perform
this process for each edge in order of the absolute value of
the pressure differences from smallest to largest. Similarly, for
the “descending filtration” we proceed in order of decreasing
pressure difference.

At each step in the filtration, the persistence algorithm
records any changes in the topological structure of the evolv-
ing subnetwork, i.e., any changes in the number of con-
nected components. When an edge is added, there are three
possibilities: (i) the new edge is not connected to any of
the pre-existing edges, increasing the number of connected
components by one, (ii) the new edge is shared between two
of the pre-existing components, joining them together and
decreasing the number of connected components by one, or
(iii) the new edge is only connected to a single pre-existing
component, incurring no change in the number of connected
components. For the first case, in which a new component
appears, we say that it is “born” and record the pressure
difference at that step, �pb, as its “birth pressure difference.”
The new edge is the “birth edge.” In the second case, in
which two components merge, we say that the component
in the pair that was born most recently has “died,” and we
record the pressure difference, �pd , as its “death pressure
difference.” The new edge is the “death edge.” In this way,
each connected component that appears during the filtration
is assigned a birth-death pair (�pb,�pd ). By carrying out
the filtration in both ascending and descending order, we
collect two sets of birth-death pairs, one for each filtration
(the approach described here is a simplified version of the
persistence algorithm that has been specialized to networks
with an edge-based filtration. A PYTHON implementation of
this algorithm is provided in Sec. I of the Supplemental In-
formation. Also, see Sec. II of the Supplemental Information,
along with Ref. [25] for a more detailed explanation of the
complete algorithm).

Figures 3(c)–3(g) illustrate this process for an example
network. New components are born in Figs. 3(c), 3(d) and
3(e), colored green, orange, and blue, respectively, with
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FIG. 3. Example of the persistence algorithm carried out on a toy
flow network tuned for a pressure difference of � = 0.5. (a) Tuned
network structure and node pressures. (b) Ordering of edges from
smallest to largest pressure difference, indicated by the index labels,
defining the ascending filtration. The absolute value of the pressure
differences are shown on a logarithmic scale from white to blue.
[(c)–(e)] Birth of three components at pressure differences �p1,
�p2, and �p12, colored green, orange and blue, respectively. [(f)
and (g)] Deaths of the blue and orange components at pressure
differences �p13 and �p18, respectively. (H) The resulting persis-
tence pairs of the ascending filtration (blue) and descending filtration
(red, algorithm not shown) plotted on a persistence diagram. Points
farther from the diagonal signify more important features with larger
persistence values τ .

corresponding birth pressures of �p1, �p2, and �p12. Fig-
ures 3(f) and 3(g) show the deaths of two of the components.
In Fig. 3(g), the blue component dies with a death pressure
of �p13, resulting in the birth-death pair (�p12,�p13), while
in Fig. 3(g), the orange component dies with death pressure
�p18, resulting in the birth-death pair (�p2,�p18). The final
component, consisting of the entire network, never dies, so we
do not assign it a birth-death pair.

Once we have collected all birth-death pairs, (�pb,�pd ),
we construct a persistence diagram, as in Fig. 3(h). For the
ascending filtration, the death pressure difference exceeds the
birth pressure difference in each pair; these pairs are repre-
sented by points colored in blue. For the descending filtration,
the death pressure difference is always smaller than the birth
pressure difference in each pair; these pairs are represented by
points colored in red. The complete set of points characterizes
the topological structure of connected components in the
network. Points associated with the ascending/descending
filtration represent regions of the network with relatively
low/high pressure differences. Loosely speaking, if we con-
sider a network as a landscape whose height is locally given
by the pressure differences, the features identified by the
ascending filtration are analogous to basins separated by
mountain ranges. The birth edge of a feature corresponds to
the local minimum of a basin, while the death edge is the
lowest mountain pass. Similarly,those features identified by
the descending filtration are analogous to the mountain ranges
separated by basins; birth edges are the peaks of mountains,
while a death edge correspond to the highest mountain pass
separating a mountain from its neighbors.

Additionally, the vertical distance of a point from the black
diagonal line in Fig. 3(h), along which �pb = �pd , is called
the “persistence”: τ = |�pd − �pb|. This measures the life-
time of a feature during the filtration process, and provides
a measure of its significance. In the landscape analogy, the
persistence is related to the depth of the basins or height of
the mountains relative to the boundaries separating them from
other basins or mountains, respectively. Small fluctuations
in pressure differences, for example, would yield birth-death
pairs with low persistence. In the example of Fig. 3, we see
that the point (�p2,�p18) has a large persistence value. This
means that the corresponding orange connected component
survives, or persists, for a large range of pressure differences
during the persistence algorithm. This high persistence sug-
gests that this feature is important for characterizing the struc-
ture of the network. In contrast, the point (�p12,�p13) has a
small persistence, and could be considered less important.

We have carried out the persistence analysis for ensembles
of tuned and untuned networks and collected the results
for each ensemble into a persistence diagram. Figure 4(a)
depicts a two-dimensional histogram representing the average
persistence diagram of over 60 000 untuned networks, each
composed of 256 nodes. For each network, the source and
target edges are selected randomly. The histogram is calcu-
lated by dividing the persistence diagram into bins in �pb and
�pd (shown as individual pixels) and counting the average
number of points (birth-death pairs) that fall within each bin
across all of the networks in the ensemble. We exclude any
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FIG. 4. Average persistence diagram of (a) untuned flow networks and (b) networks tuned to a pressure difference of � = 0.5. Each bin is
colored according to the average number of points found in that bin in the persistence diagrams for over 60 000 flow networks of 256 nodes.
Points located above the diagonal correspond to the ascending filtration, while those located below the diagonal correspond to the descending
filtration. Features for which the birth and death pressure differences are exactly equal are excluded from all persistence diagrams due to
negligible topological significance (persistence τ = 0). (c) Evolution of the average persistence diagram with tuning. The average persistence
diagram is calculated for 11 values of target pressures � ranging from 0 to 1 in steps of 0.1. Each bin is colored according to the value of �

whose average persistence diagram has the largest number points in that bin.

points for which τ is exactly zero, as these features can be
interpreted as having no topological significance. We observe
two different clusters of features for untuned networks, both
of which correspond to fluctuations in the response due to the
discrete nature of the initial networks. The features clustered
near the origin are typically located far from the source edge
where the pressure difference scale is relatively low. The band
of features below the diagonal at birth pressure differences
between about �pb = 0.35 and 0.6 typically correspond to
small numbers of isolated edges of relatively high pressure
differences located near the source. In the continuum limit
of Laplace’s equation with infinite system size, both sets
of features would collapse towards a single point at the
origin.

Figure 4(b) shows the equivalent histogram for an ensem-
ble of networks tuned to a target pressure of � = 0.5. A
comparison of Figs. 4(a) and 4(b) shows that the histogram
of the persistence diagrams changes drastically in two ways.
First, a high concentration of features appears in the ascending
diagram, located above the diagonal, concentrated in a thin
vertical band at a birth pressure of �pb = 0, with death
pressures ranging from zero to our tuned response of � = 0.5.
This indicates that tuned networks tend to develop regions of
almost perfectly uniform node pressure (zero pressure differ-
ence), separated by boundaries of high pressure differences
up to the tuned pressure difference. Most of these features are
located far above the diagonal, indicating that they are of high
significance. Similarly, for the descending diagram, a vertical
band appears for the tuned networks that is absent for untuned
networks. This band is concentrated at a birth pressure equal
to our tuned response � = 0.5 with a death pressure ranging
from zero to 0.5. This band corroborates our observations
of the ascending filtration; it indicates that there are regions
of pressure differences equal to our tuned response. These
likely correspond to the boundaries between regions of uni-
form node pressures. Again, many of these features are of
high significance because they are located far below the
diagonal.

To understand how persistence diagrams evolve in more
detail, we calculate the average persistence diagram for 11
target pressures ranging from � = 0.0 to 1.0. For each bin, we
find the value of � whose average persistence diagram is most
highly represented, with the largest average number of points
in that bin compared to all �. We color each bin according
to this representative value of � as shown in Fig. 4(c). We
see that as networks are tuned for larger and larger target
pressures �, the average ascending persistence diagram is
steadily populated with points far above the diagonal in a
band at �pb = 0 ranging from �pd = 0 to �, while the
average descending diagram develops features at the tuned
target pressure, in bands located at �pb = �. This confirms
that the trends we see in Figs. 4(a) to 4(b) generalize to all
values of �.

These results show that at all values of �, the response
of tuned flow networks encodes topologically significant
connected components as detected by the persistence anal-
ysis. At the extreme limit � = 1, these features should
correspond exactly with those we observed in the previous
section. For the case where � < 1, these features evidently
correlate with the tuned function as the value of � can be
read off from the persistence diagram. In both cases, persis-
tent homology is able to quantitatively capture a structural
signature of the function. In the next section, we demonstrate
a process for extracting these connected components from
the persistence analysis for any value of �, allowing us to
determine the precise relationship between these aspects of
the structure and the tuned function.

V. TOPOLOGICAL CHARACTERIZATION

Now that we have identified persistent features that appear
in the tuned network structures, namely the features in the
vertical bands that appear at �pb = 0 in the ascending filtra-
tion and at �pb = � in the descending filtration, we associate
these features with the components they actually represent in
the tuned networks. The obvious approach would be simply
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FIG. 5. (a) The sector skeleton of the tuned network structure
shown as thick gray lines, with boundary (death) edges shown as
thick dashed lines, overlaid on the absolute values of the pressure dif-
ferences shown on a logarithmic scale from white to blue. This tree
encodes the topology (connectivity) of the connected components of
the network. The filtration index of birth and death edges are shown
with circular and rectangular backgrounds, respectively. (b) Using
the death edges as the boundaries of components, three components
shown in green, orange and blue can be identified. [(c) and (d)]
Each boundary (death) edge can be used to decompose the network
into two unique sectors shown in green and orange. The birth-death
pair associated with each boundary edge can be used to assign a
persistence value τ to each possible pair of sectors. In (c), τ = 0.12,
while in (d), τ = 1.0, the maximum possible value, indicating the
greatest possible topological significance. To represent the network,
the pair of sectors is chosen which has the greatest value of τ and
places each target node into a separate region [in this case, the sectors
in (d)].

to identify the connected components that define each point
in the persistence diagrams at either their birth or directly
before their death as shown in Fig. 3. However, components
can merge multiple times, forming a binary tree of component
mergers. This results in identified regions that overlap with
one another, with each node belonging to many different
components. Instead, for simplicity, we seek to divide the
network into nonoverlapping regions.

To accomplish this, we introduce a method of hierarchical
clustering which utilizes the information uncovered by the
persistence algorithm. The result is a topologically coarse-
grained representation of our network composed of the most
significant features relevant to the tuned function. We start
the process of coarse-graining by creating a skeletonized tree
representation of our network [shown in Fig. 5(a) as thick
solid and dashed lines], which we term the sector skeleton,
which both encodes the topological changes we see in our
persistence algorithm and also allows us to uniquely divide
our network in distinct components. To create this tree, we

first perform the ascending filtration we defined in the pre-
vious section, keeping any edge which fits at least one of
the following criteria: (i) the edge creates a new connected
component (a birth edge), (ii) the edge merges two connected
components (a death edge), or (iii) the edge adds a new vertex
to the network. Alternatively, we could exclude any edge that
creates a cycle during the filtration.

Next, we record any edges that fit the second criterion with
a dashed line (marked as thick dashed lines in Fig. 5). As
these edges denote merging events in our filtration, they nat-
urally separate our network into different components. Using
these edges as the boundaries between regions in the sector
skeleton, we partition the network into different connected
components, shown as the green, orange and blue regions in
Fig. 5(b). Each boundary edge we identify corresponds to a
death event and is identical to one of the death edges identified
by the persistence algorithm, along with its associated birth-
death pair. The corresponding birth edge is always the edge
with the minimum filtration index for one of the sectors. In
Fig. 5, the boundary edge connecting the blue and green sec-
tors is associated with the pair (�p12,�p13), while the edge
connecting the orange and green sectors is associated with
the pair (�p2,�p18) (we note that although each boundary
edge in the example is located on the boundary of the sector
containing its corresponding birth edge, this will generally not
be guaranteed).

This process of decomposing the network into sectors is
analogous to the watershed transform often used in image seg-
mentation [31]. However, as is often the case when performing
watershed transforms on noisy data, naively decomposing the
sector skeleton into a maximal number of components results
in rampant over-segmentation. Each of the large number of
points in our persistence diagram results in a new segment,
no matter how small its persistence value. The first row in
Fig. 6 shows all of the individual components corresponding
to birth-death pairs for the four networks from Fig. 1, along
with the underlying pressure differences. Each component is
colored arbitrarily in order to highlight individual regions.
One can see how each component effectively forms a basin
in the pressure difference landscape (see previous section for
further explanation of landscape analogy). The second row
in Fig. 6 depicts the sector skeleton associated with each
network. Clearly, all the networks are highly segmented, and
the many individual connected components do not provide
much structural intuition.

To remedy this, we draw insight from the highly partitioned
networks in Fig. 2, especially from the � = 1.0 limit, in order
to coarse-grain the networks into the most significant sectors.
Since a tree by definition has no cycles, each boundary
edge divides a network into exactly two sectors, as shown
in Figs. 5(c) and 5(d). In general, if we choose n boundary
edges, the result will be a decomposition of the network into
n + 1 sectors. In order to choose which subset of these edges
provides the most relevant decomposition of the network, we
examine the value of the persistence τ for the birth-death pairs
corresponding to each boundary edge. For flow networks, the
value of τ providing a measure of the topological significance
of each possible pair of sectors, with 0 � τ � 1. As a result,
we give higher preference to boundary edges with larger
associated values of τ . For example, the boundary edge and
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FIG. 6. Comparison of the four flow networks in Fig. 1 both before and after topological coarse-graining. (First row) Before coarse-
graining, each network shows a high degree of over-segmentation with its structure decomposing into a large number of connected components.
Each component is colored arbitrarily such that no two neighbors have the same color. The absolute values of the pressure differences on the
edges are shown on a logarithmic scale from white to blue. (Second row) The sector skeleton representing the topology (connectivity) of the
components is shown with thick gray lines. Edges in the tree that overlap two separate regions correspond to boundary (death) edges. (Third
rRow) After simplification, the number of connected components is greatly reduced. In (A3) and (B3), we identify the two main components
of highest persistence (shown in green and orange), each associated with a single target node. In (C3) and (D3), we identify three and four
components, respectively. (Fourth row) The correspondence between the resulting sectors and the pressure differences on the edges.
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corresponding sectors in Fig. 5(c) have a persistence of only
τ = 0.12, while those in Fig. 5(d) have maximum possible
value of τ = 1.00, making it more preferable.

Although a large value of τ may indicate high significance,
it does not guarantee relevance to the tuned response on its
own. Therefore we apply an additional physical criterion to
choose the appropriate subset of boundary edges. Since we
tune each network to exhibit a particular pressure differential
between each pair of target nodes, we restrict ourselves to
boundary edges which result in each individual pair of target
nodes being separated into two different sectors. If more than
one of these boundary edges exist, we choose the one with the
largest value of τ . When there is only a single target, there
will be always be a unique choice of boundary edge when
one exists. For the example in Fig. 5 where there is a single
target, this would result in choosing the boundary edge and
pair of sectors in Fig. 5(d). In this case, the pair of sectors
which separate the target nodes coincides with the overall
most persistent birth-death pair.

When there are multiple targets, choosing the appropriate
set of high-τ boundary edges is more complicated. To begin,
we treat each pair of target nodes independently as in the
single-target case, recording the boundary edge of highest τ

for each pair which places its nodes into separate sectors.
Using all of these recorded boundary edges results in a
partition of the network into a number of sectors. While the
pair of nodes comprising each target are placed into separate
sectors, nodes from different targets are often grouped into the
same sector. However, this resulting partition of the network
often contains more sectors than are minimally necessary to
satisfy the target node separation constraint. It is possible for
a boundary edge chosen to separate one pair of target nodes to
be redundant if a another boundary edge chosen for a differ-
ent pair of target nodes simultaneously separates both pairs.
Since we initially chose the boundary edges with the highest
possible τ , if two boundary edges are redundant, the edge
with the smallest τ must be irreplaceable, otherwise a higher τ

edge would have been chosen. Therefore we eliminate some
of the higher τ boundary edges from our initial choice that
are not necessary to satisfy our target separation constraints.
After the initial round of recording the highest-τ boundary
edge for each target, we examine each target a second time,
recording the boundary edge of lowest τ within the set of
high-τ edges which satisfies the constraint for that edge. The
result is a second reduced list of boundary edges allowing
us to construct a simpler partition of the network. Although
this process still does not guarantee the smallest possible
number of sectors, it does significantly reduce the number
of sectors in a unique manner while avoiding examining the
combinatorially large number of possible decompositions (a
PYTHON implementation of the topological coarse-graining
procedure is provided in Sec. I of Ref. [32]).

Without choosing any arbitrary cutoffs, this process en-
ables us to uniquely decompose each tuned network into a
set of significant regions. Furthermore, the values of τ for
the chosen boundary edges give us a quantitative measure of
the validity of our assumption that each pair of target nodes
is divided into two sectors of differing node pressures. If τ

is measured to be zero for a boundary edge, then it is not
possible to separate the network into an adequate number of

components in this way. However, if τ is significantly larger
than zero, then the resulting sectors also correspond to topo-
logically significant connected components in the network.
Thus τ quantifies the degree of confidence we can put into
the sectors identified by the analysis.

The third row of Fig. 6 demonstrates the results of this pro-
cedure for the networks shown in Fig. 1. After coarse-graining
via persistence, the topological structure of the networks in
Figs. 6(a3) and 6(b3) has been greatly simplified compared
to the initial components in Figs. 6(a2) and 6(b2), allowing
us to identify two main sectors (shown as green and orange),
each associated with a separate target node. Similarly, the
multifunctional networks in Figs. 6(c3) and 6(d3) simplify
to three and four sectors, respectively. The fourth row of
Fig. 6 depicts the association between the sectors and the
tuned pressure differences. These sectors allow us to compare
networks directly that have been tuned to perform the same
function (as in the first and second columns), along with
multifunctional networks (third and fourth columns).

VI. STRUCTURE-FUNCTION RELATIONSHIP

Figure 7 shows the dependence of the sectors on the
magnitude of the tuned response for a network with a single
target. In Figs. 7(a1) and 7(a2), we see that before tuning,
the sectors (highlighted as green and orange) do not have any
obvious correlation to the network structure nor the response.
Figure 7(a3) shows a histogram of the pressures on the nodes,
highlighting the regions of the histogram associated with
each sector. After tuning to a target pressure of � = 0.05,
Figs. 7(b1) and 7(b2) show that the network response has
already segregated into two sectors whose boundaries are
partially defined by large pressure differences that are a result
of edges that have been completely removed in that region.
Examining the histogram in Fig. 7(b3), we see that the overlap
between the regions of the histogram associated with the
two sectors has started to decrease. For each sector, we can
measure the median node pressure p, shown as vertical dashed
lines in Fig. 7(b3). We can then measure the absolute value of
the difference in these median node pressures as an effective
pressure difference between the two regions. We call this
quantity the sector pressure difference, �p. We find that �p =
0.09, roughly tracking the tuned pressure differences. Located
above each histogram is a schematic of the sector connectivity
with sectors represented as nodes, with source nodes in red.
The symbols (and approximate horizontal positions) represent
sign and magnitude of the median node pressure for each
sector.

Further tuning to a target pressure of � = 0.2 yields
Figs. 7(c1) and 7(c2), where the two sectors partition the
network even more clearly, even as the underlying network
architecture remains connected as a single component. The
areas of the histogram in Fig. 7(c3) associated with each
sector now comprise separate peaks. The nodes are almost
completely partitioned into the two sectors according to the
sign of the node pressure. The sector pressure difference
between the two regions is �p = 0.25, continuing to roughly
track the tuned pressure difference. Finally, Figs. 7(d1) and
7(d2) show a complete partitioning of the network according
to node pressure at a tuned pressure difference of � = 1.0.
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FIG. 7. Evolution of the network structure and response with corresponding sector partitioning for a network with a single target
(a) before tuning and the same network tuned for target pressure differences of (b) � = 0.05, (c) 0.2, and (d) 1.0. Each network is tuned
directly from the same initial configuration in (a). (First Row) The coarse-grained sectors characterizing the response are highlighted in green
and orange. The source nodes are shown in red and the target nodes in green. The pressures on the nodes are shown in black where the symbol
denotes the sign of the pressure and the size denotes the magnitude. The thickness of the edges corresponds to the conductance. Edges that
are shown as thick dashed blue lines have been fully removed in the process of tuning. (Second row) Correspondence of the sectors and
the pressure differences on the edges. Edges are colored white-to-blue on a logarithmic scale according to the absolute value of the pressure
differences. (Third row) The associated histogram of node pressures with green and orange portions showing the contributions of nodes in the
green and orange sectors, respectively, shown in the first and second rows. The median node pressure in each sector p is shown as a black
vertical dashed line for the tuned networks, along with the sector pressure difference �p. Inset in each histogram is a schematic depicting
the connectivity between sectors, represented as nodes with source nodes in red. Edges indicate existence of edges between sectors in tuned
network. Symbols (and approximate horizontal position) denote sign and magnitude of median node pressures.

The histogram in Fig. 7(d3) confirms this, as it shows two
narrow peaks of node pressures with �p = 1.0. In addi-
tion, the schematic shows the two sectors are completely
disconnected.

Figure 8 shows the same process for a multifunctional
network with six targets. Again, in Figs. 8(a1) and 8(a2),
we see that before tuning, the various colored sectors do not
have any obvious correlation with the network structure
nor the response. As the network is tuned to larger and
larger pressure differences, it separates into three sectors of

relatively uniform node pressures until finally, the network
almost completely disconnects into these three sectors at a
target pressure difference of � = 0.5, shown in Figs. 8(d1)
and 8(d2). In a manner similar to the single target case, each
sector corresponds to a separate peak in the histogram of
node pressures and the sector pressure differences measured
between neighboring peaks approximates the tuned pressure
difference. The sector schematic shows that the final sectors
are connected to teh source nodes like a sequence of resistors
in series.
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FIG. 8. Evolution of the network structure and response with corresponding sector partitioning for a multifunctional network (a) before
tuning and the same network tuned for target pressure differences of (b) � = 0.05, (c) 0.2, and (d) 0.33. Each network is tuned directly from
the same initial configuration in (a). (First Row) The simplified sectors characterizing the response are highlighted in various colors. The
source nodes are shown in red and the target nodes in green. The pressures on the nodes are shown in black where the symbol denotes the sign
of the pressure and the size denotes the magnitude. The thickness of the edges corresponds to the conductance. Edges that are shown as thick
dashed blue lines have been fully removed in the process of tuning. (Second row) Correspondence of the sectors and the pressure differences
on the edges. Edges are colored white-to-blue on a logarithmic scale according to the absolute value of the pressure differences. (Third row)
The associated histogram of node pressures with green and orange portions showing the contributions of nodes in the various colored sectors
shown in the first and second rows. The median node pressure in each sector p is shown as a black vertical dashed line for tuned networks.
The sector pressure difference �p between sectors with neighboring regions in the histograms are listed in the same order as the regions. Inset
in each histogram is a schematic depicting the connectivity between sectors, represented as nodes with source nodes in red. Edges indicate
existence of edges between sectors in tuned network. Symbols (and approximate horizontal position) denote sign and magnitude of median
node pressures.

In summary, Figs. 7 and 8 show that as the target edges are
tuned to larger and larger pressure differences, the networks’
responses steadily partition the nodes into distinct sectors,
even as the underlying network architecture remains a single
connected component. The node pressures within each sector
are relatively uniform and the difference between the median
node pressures of the sectors provide an approximation to the
tuned target pressure difference. This description holds even
when multiple targets are being tuned.

We have established the generality of these observations
by tuning ensembles of networks with various numbers of
nodes N and numbers of targets NT to a variety of target
pressure differences �. For each combination of �, N and
NT , we attempt to tune 256 different networks, averaging all
resulting measurements only over those systems that were
tuned successfully (the fraction that can be tuned successfully
for a given �, N and NT is the focus of Ref. [9]). In each
case, we follow our topological coarse-graining procedure
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FIG. 9. Sector pressure difference �p vs tuned target pressure
difference �pT averaged over every pair of target nodes for (a) a
variety of system sizes of N nodes with a single target NT = 1
and (b) at fixed system size N = 512 for a variety of numbers of
targets NT at various target pressure differences �. For every target,
the sector pressure difference is measured between the two sectors
that contain that pair of target nodes. Each point is averaged over
all successfully tuned networks for a particular combination of �,
N , and NT . Error bars in both �p and �pT represent standard
deviations.

to obtain the sectors with highest τ that separate the target
nodes. For each sector obtained this way, we calculate the
median node pressure p. Next, for each pair of target nodes,
we measure the sector pressure difference �p between their
corresponding sectors, along with the actual tuned pressure
difference measured between that pair of target nodes �pT .
For this analysis, we present results for two-dimensional net-
works (results for three-dimensional networks are presented in
Ref. [22]). Figure 9(a) plots the correlation of �p and �pT for
various system sizes N and target pressure differences � tuned
for the case of a single target, NT = 1. Similarly, Fig. 9(b)
shows the same correlation, but for multifunctional networks
with various numbers of targets NT at fixed system size
N = 512. We see that �p closely tracks �pT for all system
sizes, numbers of targets, and target pressure differences, with
almost perfect agreement on average for larger systems and
larger numbers of targets. We observe that standard deviation
of each point decreases for larger N and smaller NT with both
cases corresponding to larger average sector sizes. This sug-
gests that the spread in the relationship between the measured
and tuned response may be due to finite-size effects.

For Fig. 10, we measure various properties related to the
topological significance of the sectors identified in each net-
work. Figure 10(a) shows results for networks tuned for a sin-
gle target, while Fig. 10(b) shows results for multifunctional
networks. In Figs. 10(a1) and 10(b1), we measure the average
sector persistence τ versus the tuned pressure difference �.

FIG. 10. Statistical properties of the persistence τ for (a) a
variety of system sizes of N nodes and a single target NT = 1
and (b) at fixed system size N = 512 for a variety of numbers
of targets NT at various target pressure differences �. [(a1) and
(b1)] Average minimum sector persistence τ of the sectors resulting
from topological coarse-graining as measured from the birth-death
pair associated with the boundary (death) chosen during topological
coarse-graining. A maximum value of τ = 1 indicates maximum
topological significance. [(a2) and (b2)] Average percentile rank of τ

for the resulting pair of sectors out of all possible boundary edges that
could have been chosen to partition the network into sectors. [(a3)
and (b3)] Fraction of networks for which topological coarse-graining
cannot successfully separate each pair of target nodes into separate
sectors. This fraction vanishes rapidly with increased tuned response
� and system size N . For all plots, each point is averaged over all
successfully tuned networks for a particular combination of N , NT ,
and �. Error bars in τ and the percentile rank represent standard
deviations, while error bars for the fraction of successfully coarse-
grained networks are shown as the Wilson score interval.

We take τ as the smallest persistence of the birth-death pairs
associated with the boundary (death) edges chosen to separate
the sectors in a network by the topological coarse-graining
process. We see that τ approaches a maximum value of one for
large tuning thresholds, indicating that the sectors correspond
to one of the most topologically significant features for each
network. To further validate this, Figs. 10(a2) and 10(b2)
show the average rank percentile of τ out of all birth-death
pairs with nonzero persistence within each network. The
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boundary edge associated with each birth-death pair repre-
sents an alternative partitioning of the network into sectors.
We see that in all cases, the rank percentile rapidly approaches
unity, indicating that even if the sectors do not correspond to
the feature with highest persistence in a given network, they
still correspond to one of the most topologically significant
features.

For Fig. 10, we measure various properties related to the
topological significance of the sectors identified in each net-
work. For each network, topological coarse-graining results
in a set of boundary (death) edges used to partition a network
into sectors. Since each boundary edge is associated with a
particular birth-death pair, we can assess the significance of
a particular set of sectors by measuring the corresponding
persistence values of each pair. We identify τ as the small-
est persistence of the birth-death pairs associated with the
boundary edges chosen to partition a network into sectors
via topological coarse-graining. In Figs. 10(a1) and 10(b1),
we measure the average sector persistence τ versus the tuned
pressure difference �. We see that τ approaches the maximum
possible value of one for large tuning thresholds, indicating
that the sectors are of maximal (or near-maximal) significance
for each network. Furthermore, we can compare τ for the
sectors we identify to other hypothetical partitions of our
network. Since each combination of boundary edges repre-
sents a different partitioning of a network into sectors [e.g., as
depicted in Figs. 5(c) and 5(d)], if there are n boundary edges,
then there are 2n possible sets of sectors that can be identified.
Due to this large number of partitions, we instead compare the
significance of our set of sectors to all n possible partitions of
the network into just two sectors. Since τ is always taken from
the single least significant boundary edge, this should provide
an adequate approximation. Figures 10(a2) and 10(b2) show
the average rank percentile of τ out of all birth-death pairs
with nonzero persistence within each network. We see that
in all cases, the rank percentile rapidly approaches unity,
indicating that even if the sectors do not correspond to the
partitioning with highest persistence in a given network, they
still correspond to one of the most topologically significant
possibilities.

We note that sometimes it is not possible to divide a
network into sectors that separate each pair of target nodes.
For a particular pair of target nodes, this can occur either
because they are not separated by a boundary edge or because
the persistence algorithm does not produce any birth-death
pairs for that network, indicating no topological features were
found during the filtration. When this occurs for a particular
target, we assign that target a sector pressure difference of p =
0, as that pair of target nodes are contained within the same
sector. We also assign that pair of target nodes a persistence
of τ = 0 since they are not associated with any topologically
significant features. These assignments have allowed us to
include these systems in Figs. 9 and 10. In Figs. 10(a3)
and 10(b3), we measure the number of networks for which
topological coarse-graining cannot separate each pair of target
nodes. We see that this only occurs for small system sizes or
for larger systems when � � 1.

To measure the uniformity of node pressures within the
sectors, we calculate the overlap of the tuned network re-
sponse with an approximate response, in which each node in a

FIG. 11. Statistical properties of the node pressure response for
(a) a variety of system sizes of N nodes with a single target NT = 1
and (b) at fixed system size N = 512 for a variety of numbers
of targets NT at various target pressure differences �. [(a1) and
(b1)] Average quality q of the approximation given by assigning
each node in a sector the median node pressure of that sector and
comparing to the actual response; see Eq. (1). The quality approaches
one with increasing � and NT . [(a2) and (b2)] Average maximum
pairwise overlap of the node pressure distributions of the sectors
within each network. The overlap is calculated by taking one minus
the two-sample Kolmogorov-Smirnov statistic between each pair of
distributions of node pressures, with one indicating maximum over-
lap and zero indicating no overlap. The maximum overlap quickly
approaches zero for increasing �. Each point is averaged over all
succesfully tuned networks for a particular combination of N , NT ,
and �. Error bars in q and the maximum overlap represent standard
deviations.

sector is assigned that sector’s median node pressure p. Given
a network with N nodes, we represent the response as a length
N vector �p where the ith component is the pressure of the ith
node. Similarly, we define the approximate uniform response
as the vector �punf, where the pressure for each node i is equal
to the median node pressure within its sector. We measure the
similarity of these two responses using the following measure
of overlap, which we call the sector quality:

q = �p · �punf

p2 + p2
unf

, (1)

where p and punf are the norms of the two vectors. The quality
is q = 0 when the vectors are orthogonal and q = 1 if both
their directions and magnitudes are identical. In Figs. 11(a1)
and 11(b1), we see that q steadily increases to its maximum
value of one for large �. Clearly, q is substantially greater
than 0 for all N , NT , and � > 0. We have included networks
in this measurement for which topological coarse-graining did
not produce adequate sectors that separate all pairs of target
nodes.
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We also measure the pairwise overlap of the distributions
of node pressures in each sector. For each pair of sectors in
a network, we measure the two-sample Kolmogorov-Smirnov
(K-S) statistic between their node pressure distributions (the
colored regions of the histograms in Figs. 7 and 8). Taking
one minus this statistic, we quantify the difference between
the contributions to the total node pressure histograms of each
pair of sectors, with a value of zero indicating no overlap
between the two sectors [as in Fig. 7(d3)] and one indicating
that the two sectors overlap significantly [as in Fig. 7(b3)].
For each network, we then record the maximum value of this
overlap over all pairs of sectors. In Figs. 11(a2) and 11(b2),
we show the maximum pairwise sector response overlap
averaged over each networks. We see this quantity quickly
approaches zero with increasing �, especially for larger N ,
indicating that the two sectors rapidly segregate into regions
with nonoverlapping distributions of node pressures. Here we
have excluded networks where topological coarse-graining
failed to produce more than one sector.

VII. NUMBER OF SECTORS VERSUS TUNED RESPONSE

Figures 8(c) and 8(d) show that the number of sectors Ns

in a multifunctional network does not correspond directly to
the number of targets NT . What sets the number of sectors in
a tuned network? We can derive an approximate upper bound
on Ns as follows. We consider a network tuned to perform
a function with an arbitrary number of targets, each with a
pressure difference of at least �. Suppose the network has
partitioned into Ns sectors arranged in series (like resistors)
such that any path in the network from one source node to the
other must enter each sector exactly once. Furthermore, we as-
sume that each pair of sectors that appears sequentially along
this path is necessary to separate a pair of target nodes. This
means that no two sectors with the same median node pressure
p exist, as having such sectors would require an unnecessary
removal of edges. The pressure difference between any pair
of these neighboring sectors must then be at least �p � �. If
the total pressure difference between the source nodes is �pS

(equal to one in our case), then the sum of pressure differences
along the path between the source nodes must also sum to
�pS , such that �pS = (Ns − 1)�p � (Ns − 1)�. Saturating
this inequality, we can solve this equation for the maximum
number of sectors Lmax

s as a function of the tuned response �,

Lmax
s = 1 + �pS

�
. (2)

Figure 12(a) shows the average number of sectors as a
function of � for various numbers of targets. These measure-
ments are taken from the same multifunctional networks as
those shown in the previous section. As � increases for fixed
values of NT , the number of sectors starts to decrease as Ns

approaches Lmax
s , approximately following the black dashed

curve given by Eq. (2). However, for larger values of NT ,
Lmax

s under counts the maximum possible number of sectors
on average. In these large-NT cases, we observe that many
sectors can form in parallel, increasing the maximum possible
number and violating our assumption for Lmax

s that the sectors
form in series.

(a)

(b)

FIG. 12. (a) Average number of coarse-grained sectors Ns and
(b) average maximum number of sectors in series Ls as a function
of � for a system of size N = 512 with various numbers of targets
NT . The estimated maximum number of sectors Lmax

s from Eq. 2
is shown as a black dashed curve. While Ns can exceed Lmax

s for
large numbers of targets, Ls does not exceed this limit. Each point
is averaged over all successfully tuned networks for a particular
combination of � and NT . Error bars represent standard deviations.
[Inset in (b)] Schematic of connectivity between sectors for network
in Figs. 1(d) and 6(d4) tuned for � = 0.2. Nodes correspond to
sectors and edges indicate existence of edges between sectors in
tuned network, with source nodes in red. Symbols denote sign and
magnitude of median node pressures with nodes positioned from left
to right in order of increasing pressure. The maximum path length in
terms of sectors is Ls = 4, measured from positive to negative source
node with monotonically increasing pressure. This is the below the
limit Lmax

s = 6 set by � = 0.2.

To refine this measurement, we look for the longest se-
quence of sectors connected in series in each network. We
represent each sector with a single node whose pressure is
the median of the nodes in that sector p. We characterize
the connectivity of the sectors by looking for edges with
nonzero conductance between each pair. If we find at least
one edge with nonzero conductance connecting two sectors,
we place an edge between them. Finally, we find the longest
sequence of sectors from the negative to positive source nodes
with monotonically increasing node pressures, and record its
length which we denote Ls, the maximum number of sectors
observed in series in a given network. An example of this
simplified network is depicted in the inset of Fig. 12(b) for
the network in Figs. 1(d) and 6(d4) tuned for � = 0.2. The
longest path of sectors in this network has length Ls = 4,
below the limit Lmax

x = 6 set by � = 0.2.
Figure 12(b) shows Ls averaged over the networks in

Fig. 12(a). We see that the number of sectors closely tracks
Lmax

s for large NT , only exceeding it at times by a relatively
small amount. Part of this small excess is due to the fact that
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our topological coarse-graining procedure does not guarantee
the smallest possible number of sectors, but rather the ones
with the largest values of persistence. This means that at times
a smaller number of sectors would suffice, but would not be
as topologically significant. Additionally, the node pressures
within each sector are not perfectly uniform, creating an
additional source of noise in the analysis. Nonuniform node
pressures within each sector could allow a network to exceed
Lmax

s , while still obeying Kirchhoff’s law.
Our arguments suggest that the maximum number of tar-

gets that can be successfully tuned is indirectly controlled by
the constraint that the number of sectors in series cannot ex-
ceed Lmax

s . For certain combinations of target edges, solutions
with the required number of sectors in series cannot be found,
and the response of every target edge cannot be satisfied.

VIII. DISCUSSION

A. Summary

In summary, we have established a quantitative charac-
terization of function in flow networks by analyzing their
responses using persistent homology. This analysis reveals
the topological means by which function is tuned into these
networks, providing a clear relationship between structure and
function. As a network is tuned to larger and larger pres-
sure differences at the targets, local changes in the network
structure coordinate over larger scales to partition the network
into sectors of relatively uniform pressure which characterize
and correlate with the tuned response. These sectors are a
property of the response of the network to external stimuli,
rather than solely the underlying graph structure (i.e., the node
connectivity and edge weights). Although the network does
not physically separate into topologically disconnected com-
ponents for � < 1, the topology of the response robustly sorts
nodes into distinct sectors. In addition, these sectors allow us
to gain some insight into the limits of multifunctionality, since
the maximum number of possible sectors sets a constraint on
the types of functions that can be achieved.

The sector description provides a unifying description for
all flow networks tuned to perform the class of functions
considered here, including networks with different underlying
network architectures tuned for the same function (i.e., same
�) and networks tuned to perform complex multifunctional
tasks. In analogy to the way in which genus is used to classify
manifolds with different numbers of holes, independent of
geometrical details (e.g., the famous equivalence between a
coffee cup and a doughnut), the number of connected compo-
nents (i.e., the zeroth Betti number) encoded in the response
allows us to classify tuned networks.

Although the local node connectivity and geometrical
structure can differ between two networks tuned for the
same function, the commonality in structure of the networks
becomes apparent when viewed through a topological lens.
This leads us to propose a refinement of the structure-function
paradigm in the context of functional flow networks. Since
the process of tuning is inherently topological, the aspect of
structure that relates to function is also topological; it is the
relationship between the topological structure of the response
and function that is important. The vast number of possible

configurations of the local network structure that are able to
perform a specific function produce responses with the same
overall topological structure. This structure is encoded in the
connectivity of the sectors, rather than that of the individual
nodes. The fact that the structure-function relationship is
topological contributes to the robustness of our results even in
the case of small �, when the structures relevant to the tuned
function are not discernible by eye.

Finally, we have demonstrated that the techniques pro-
vided by persistent homology—both the persistence algo-
rithm and our topological coarse-graining procedure—are
powerful tools for quantifying network structures in a unique
and threshold-independent manner. The persistence algorithm
allows us to identify the general physics that distinguishes
between systems (e.g., untuned versus tuned networks) by
taking advantage of statistical differences in topological struc-
ture. The persistence algorithm alone, however, is unable to
uncover the precise features responsible. Topological coarse-
graining allows structures identified by the persistence algo-
rithm to be translated into concrete and unique features (in
this case connected components), even in the case of noisy
data. We provide PYTHON implementations of both algorithms
in Sec. I of Ref. [32], along with an example of its usage
to reproduce the results of the toy network shown in Figs. 3
and 5.

B. Experimental implications and application

The techniques we have demonstrated, along with the
resulting characterization of the tuning process, reveal a path
forward for understanding flow networks in biological sys-
tems such as vascular networks. Obtaining an accurate and
complete map of every single vessel of an entire organ or
organism poses a difficult experimental challenge, as vascula-
ture networks frequently consist of millions of nodes and span
a range of length scales. In addition, it is known that small
errors in the connectivity or conductances can be disastrous
in determining function [33]. In spite of these obstacles,
experimental researchers have tended to direct their efforts to
fully characterizing node connectivity and edge conductances
(vessel diameters) [34]. Our results show that such detailed
knowledge of the underlying network architecture is not nec-
essary.

Remarkably, our analysis does not require information
about the edge weights (conductances), nor the locations of
the source nodes. However, we do require information about
the node pressures, local node connectivity, and locations
of the target nodes. In practice, perfect knowledge of these
details will not always be available in an experimental setting.
Here we propose several variations of our analysis which may
be useful for experimental analyses.

First, perfect knowledge of node pressure and connectivity
is not necessary. In fact, as long as pressure can be feasibly
measured at enough locations with small enough resolution
to capture fluctuations at desired length scales, a best-guess
reconstruction of the network in which edges are placed be-
tween nearest neighbors (e.g., as in a Delaunay triangulation)
would suffice. This could potentially eliminate the need for
measurements of the vascular microstructure.
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Second, Fig. 10 reveals that the sectors that best separate
the target nodes typically are separated by the boundary edges
with the highest topological significances, that is, largest
persistence values τ . If the scale of the fluctuations in pressure
differences relevant to network function is approximately
known, then all boundary edges with persistence above some
threshold could be used to define the final sectors. Choosing
boundary edges using this criterion would alleviate the need to
know the locations of the targets. In the case of flow networks,
this approach should be almost identical to the persistence-
based simplification techniques that have been suggested
for use in image analysis [35,36] (although the topological
coarse-graining procedure we provide is sufficient, we pro-
vide instructions for how to directly apply persistence-based
simplification to flow networks in Sec. II of Ref. [32]).

Alternatively, identifying targets could be avoided by
choosing one or more boundary edges in order maximize the
sector quality q. We know from Figs. 11(a1) and 11(b1) that
q is often large for the final sectors. While coarse-graining the
network to eliminate features of low persistence should elim-
inate noise from small fluctuations in pressure, optimizing for
large q could be useful for eliminating larger fluctuations, as
long as they only occur at small length scales.

In summary, the alternative approaches we propose reduce
experimental requirements of our analysis to solely partial
measurements of the node pressure at relatively closely spaced
intervals. Our persistence-based analysis can be modified to
avoid the need to determine the small-scale microstructure of
the underlying network, along with the locations of source
and target nodes. It should also be robust to noise charac-
terized by low-amplitude fluctuations or by high-amplitude
fluctuations on small length scales, depending on the specifics
of the implementation. We hope that our results will inspire
experimentalists to characterize network structures using a
topologically-informed approach to uncover the underlying
relationship between structure and function.

C. Relation of our analysis to other approaches

The persistence analysis we have introduced allows us
to detect the topological signatures of tuning using persis-
tence diagrams, without making any assumptions about the
underlying process. Topological coarse-graining further en-
ables us to identify a unique set of sectors for each network
corresponding to these signatures in the persistence diagrams.
Recently, persistent homology was proposed as a means to
perform spatial clustering on point sets [37], as opposed to
the networks studied here. Our use of persistence as a means
of simplifying topological structures was inspired by recent
work using discrete Morse theory and persistence homology
to develop algorithms for characterizing important features
in gray-scale images [35,36]. The sector skeletons we create
during topological coarse-graining are a subset of the Morse
skeleton obtained from these analyses. More specifically, it is
composed of the subset of edges in the Morse skeleton that
correspond to birth-death pairs with finite persistence values.
We provide a more formal adaptation of these prior methods
in Sec. II of Ref. [32].

We note that many procedures exist to decompose net-
works into local community structures and quantify modular-

ity based on examining the node connectivities [38]. However,
a procedure based solely on structure may fail when networks
are highly interconnected. By using a clustering procedure
which utilizes information about the response, we able to
identify structures that more directly correlate with the tuned
function. A benefit of using persistence as a means of cluster-
ing is the ability to naturally incorporate both the structure and
the response of a network simultaneously. In addition, such a
procedure can provide the guarantee that the resulting sectors
uniquely correspond to the topological features (birth-death
pairs) we observe in the persistence diagrams.

Many methods (such as divisive or agglomerative hierar-
chical clustering algorithms [39]) make use of dendrograms,
trees in which each successive descending level represents
a partition of a graph’s nodes into smaller communities.
Although the sector skeletons of our networks are not dendro-
grams, they do encode similar information about the connec-
tivity of communities at different scales and could be used to
construct a dendrogram. Persistent homology provides a rig-
orous mathematical foundation for analyzing this information.

Coarse-graining based on persistence also ensures that the
sectors we find are topologically significant. This is impor-
tant as edges located near the source nodes typically have
very large pressure differences, creating small sectors with
large pressure difference boundaries that are not necessarily
relevant to the tuned function. A method which relied on
simply looking for boundaries with large pressure differences
may not be able to distinguish between these small sectors
and those we have identified in this analysis. However, such
sectors often have small persistence values (they contain small
ranges of pressure differences) and will be eliminated by our
coarse-graining procedure. In the case that these sectors do
have relatively large persistence values, constraining the target
nodes to be located in separate sectors further helps to elim-
inate their influence. Alternatively, one might try to simply
choose a cutoff in node pressure to separate the network into
sectors. At large � this is straightforward, but it is difficult for
smaller �. As seen in Figs. 7(b3) and 8(b3), the sectors do not
always cleanly separate into distinct peaks in the histogram of
node pressures.

In the past, algorithms have been proposed to detect mod-
ular neighborhoods in networks by treating them as resistor
networks. To detect community structures, a unit resistance
is assigned to each edge and a voltage is applied across a
pair of source nodes. In one implementation, edges with large
currents can be removed to divide the network into community
structures [40]. Alternatively, if a network has a high degree of
modularity, it can be divided into regions separated by large
pressure differences [41]. However, if a network is not very
modular, choosing an appropriate cutoff in pressure can be
difficult. Both of these approaches require testing every possi-
ble pair of source nodes, or randomly sampling a sufficiently
large number of possible pairs, limiting these approaches to
smaller networks in practice. Our approach does not suffer
from any of these drawbacks.

Another set of related methods focuses on detecting bot-
tlenecks, or minimum cuts, in general transportation networks
[42]. In the context of network flow optimization (in which
flows are more broadly construed to allow for upper and
lower bounds on edge currents and unidirectional edge current

033234-16



REVEALING STRUCTURE-FUNCTION RELATIONSHIPS IN … PHYSICAL REVIEW RESEARCH 2, 033234 (2020)

constraints), an s-t cut is a set of edges that when removed
partitions the nodes of a flow network into two components,
one containing the source node s (positive node pressure) and
the other the sink node t (negative node pressure). The max-
flow min-cut theorem states that the maximum possible value
of the flow (current) from a source node to a sink node is given
by the total sum of the edge weights (conductances) defining
the minimum cut, the s-t cut with the minimum possible sum
of edge weights. Various algorithms utilize this theorem to
calculate maximum flows and, by extension, minimum cuts
[42]. While we expect that the sectors we obtain are closely
related to those found by the minimum cut algorithms for
networks with a single target edge, we do expect some dif-
ferences as these algorithms generally require an upper bound
on the maximum flow (capacity) through a sufficient number
of edges, while our flow networks lack these constraints. We
note that our approach is much more obviously generalizable
to multifunctional networks with multiple sources and sinks.
Developing a formal connection between these two methods
could provide further insight into the physical interpretation
of the sectors we detect, along with a deeper understanding of
the topological properties of more general transport networks.

In our tuned flow networks, cracklike structures formed
by edge removals partition the network into different sectors.
These cracklike defects in resistor networks have been studied
in some detail in the random resistor network literature [43],
but not in the context of tuning. Cracks lead to bottlenecks
between the sectors, inhibiting the flow of current between
the source nodes. When tuning pressure differences, these
bottlenecks are located far from the target edge. However, if
one were to tune current through the target edge rather than
the pressure difference, we expect these bottlenecks to form at
the target. An analytical theory of tuning would likely require
an understanding of the relationship between crack structures,
the segregation of the network into sectors, and the tuned
response. This work has provided an important step towards
relating the latter two, but has not explicitly explored the role
of cracks.

D. Generality of the approach

The analysis introduced here is general. We have applied it
to the problem of tuning the pressure differences through a set
of target edges as a good starting point. However, the analysis
could also be used on flow networks tuned to perform other
types of tasks, such as displaying a specific current response
or power loss through a target edge, minimizing global power
loss, etc.

Since our techniques do not depend on the local node
connectivity, we would also expect our results to be robust to
the overall network topology before tuning (e.g., nonplanar,
nonlocal edge structures or network with high degrees of
modularity). As long as a function has been successfully tuned
into a network, we would expect qualitatively similar results.
As evidence for this, we report identical results for three-
dimensional networks in Ref. [22], generated using the same
techniques as this work. We also provide various examples
in Sec. III of Ref. [32] of our sector analysis performed on
networks constructed on two-dimensional ordered lattices,
again with the same results. In addition, in this work, we

only explored the nature of connected components (0-cycles),
but the persistence algorithm can also be used to identify
significant cycles of edges (1-cycles) as well. Extending our
analysis to quantify the loop (1-cycle) topology may prove
useful in understanding the effects of the untuned network
properties on the types of functions a network can be tuned
to perform, along with the robustness of tuned networks to
damage.

Biological flow networks employ a variety of mechanisms
over a wide range of timescales in order to regulate local
flow. On relatively short timescales, the vasculature systems
of animals—notably that of the brain—and slime molds can
dynamically control local flow by constricting and dilating
vessels in order to support local activity. On longer timescales,
animals, fungi, and slime molds can control flow by re-
structuring the vasculature network. All these systems also
undergo evolution on generational timescales to modify their
network designs depending on the needs of the system or
environmental changes. In all cases, our results suggest there
may be a topological basis for function that could be uncov-
ered by applying an analysis similar to the one introduced
here.

Given that flow networks are mathematically equivalent
to one-dimensional mechanical networks [9,44], our results
suggest that one could ask whether the structure-function
relationship is also topological in mechanical networks that
can perform mechanical functions, such as motor proteins
or allosteric proteins. Mechanical networks tuned to perform
specific functions [4,5,7] also undergo topological changes
in structure during the process of tuning, developing re-
sponses ranging from hingelike motions [6,8] to more exotic
“trumpet”-like responses [5]. The extreme case of a flow
network segregated into two components with � = 1 is anal-
ogous to the notion of a mechanical mechanism as defined
in engineering; in the flow network, the response requires
no expenditure of power and in the mechanical network, it
requires no energy as a soft mode. The role of soft modes
in function has been studied in proteins [45]. Our analysis
of flow networks provides a generalization of this idea to the
case where the components are still connected with � < 1. A
similar analysis is therefore likely to be useful in identifying
the generalization of a mechanical mechanism to the case
where the deformation involved in the function is not a soft
mode.

E. Final remarks

Applications of persistent homology to networks, includ-
ing studies of flow networks in particular, tend to focus on
the underlying network structure, not the response of the
network [27–30]. Here we have established that it is not just
the topology of the underlying network, but more precisely
the topology of the response that provides the bridge between
structure and function. Indeed, our results suggest that the
relation between the underlying network structure and func-
tion is tenuous. Because only the topological structure of the
response matters, there is a multiplicity of choices for sectors.
For example, in the extreme cases shown in Figs. 2(a) and
2(b), it is clear that many different choices of the removed
bonds could have the same effect of dividing the systems
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into two distinct sectors. The multiplicity of possible sectors
implies that the correlation between the network structure and
the set of nodes in each sector is very weak. In addition,
because the sectors directly determine the function, the cor-
relation between microscopic network structure, in terms of
the connectivity of nodes and conductances of edges, and the
collective function must be weak.

We emphasize that correlation between microscopic net-
work structure and the macroscopic sectors is fundamentally
statistical in nature. In order to establish the validity of our
persistent homology analysis, we have applied it to an en-
semble of networks. This allows us to show that the analysis
identifies macroscopic sectors that quantitatively capture the
collective response (the function). In systems that are in ther-
mal equilibrium, statistical mechanics allows us to connect
microscopic properties to collective response. In systems such
as the athermal ones studied here, statistical mechanics does
not apply. Our results show that at least in this case, topologi-
cal data analysis can provide the bridge between microscopic
physics and macroscopic phenomena that is essential to true
understanding.
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APPENDIX A: FLUID FLOW EQUATIONS

Here we set up the fluid flow equation that govern the
pressure response of the networks we investigate. We also
specify how we implement the external pressure difference
source we apply. For a more general formulation of the
problem that also applies to mechanical network see Ref. [9].

1. Linear response

A network is described by a set of N nodes and NE

edges. The response of a flow network to external stimuli
is represented by a pressure pi on each node i. For each
edge < i, j > composed of nodes i and j, we also define the
edge current qi j which flows from node i to node j, along
the pressure difference �pi j = p j − pi. For each edge, which
node is identified as i and which as j is chosen arbitrarily
when the network is first generated.

The fluid flowing through each node obeys mass conserva-
tion. This means that any external current source qi applied
to a node i is balanced by the currents flowing through the
adjacent edges shared by that node,∑

〈i, j〉
qi j = qi (A1)

where 〈i, j〉 indicates a sum over all edges shared by node i.
Next, we assume that each edge represents a resistive pipe

that applies friction to any fluid passing through. To linear
order, this takes the form of Darcy’s law, relating the current

to the pressure across each edge,

qi j = −ki j�pi j (A2)

where ki j is the conductance of edge < i, j >. This conduc-
tance is typically taken to be proportional to a power of the
cross-sectional area of a vessel and inversely proportional
to the length. It also depends on the precise details of the
frictional interaction between the pipe walls and the fluid.

Finally, we can combine Eqs. (A1) and (A2) to achieve
a discrete Laplace’s equation (or Poisson’s equation if the
current source is nonzero),∑

j

Li j p j = −qi. (A3)

In matrix form, we can represent this equation as

L|p〉 = −|q〉, (A4)

where |p〉 and |q〉 are length N vectors of node pressures
pi = 〈i|p〉 and node source currents qi = 〈i|q〉, respectively.
We have defined the size-N × N discrete Laplacian (matrix)
operator L with elements

Li j =
{∑

i �= j ki j i = j
−ki j i �= j

, (A5)

where ki j is nonzero only if an edge exists between nodes i
and j.

2. Bordered Laplacian

In its default form, Eq. (A4) only considers node current
sources. However, in this work we focus on pressure sources.
To apply a pressure source, we impose additional pressure
constraints on our networks. To impose these constraints, we
first reformulate Eq. (A4) as an optimization problem where
we minimize the power loss through each edge

P = 1

2
〈p|L|p〉, (A6)

where the factor of one-half is added for convenience. We can
then incorporate this into a Lagrangian

L = P − 〈q|p〉 − λS (�pSiS j − �pS ) − λG

∑
i

pi. (A7)

The second term in this Lagrangian accounts for the node cur-
rent sources �q. In the third term, we apply the source pressure
�pS as a constraint with Lagrange multiplier λS to the source
nodes Si and S j . Finally, when solving Laplace’s equation
there is always freedom to uniformly increase or decrease the
node pressures. This means that by default, Eq. (A4) does not
have a unique solution. To account for this, we include an
extra constraint represented by the fourth term with Lagrange
multiplier λG which ensures that the node pressures always
sum to zero and that a unique solution always exists.

To solve for the pressure response, we must now extremize
Eq. (A7) with respect to the node pressures and Lagrange mul-
tipliers. In matrix form, the resulting set of linear equations is

L|p〉 = |q〉, (A8)
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where we have defined the bordered Laplacian

L =
⎛
⎝ L −|1〉 −|S〉

−〈1| 0 0
−〈S| 0 0

⎞
⎠ (A9)

along with the bordered pressure and current vectors

|p〉 =
⎛
⎝|p〉

λG

λS

⎞
⎠, |q〉 =

⎛
⎝ |q〉

0
−�pS

⎞
⎠. (A10)

The vector |1〉 is defined such that each element is 1, and the
vector |S〉 is defines to pick out the source nodes such that

〈S|p〉 = �pSiS j . (A11)

APPENDIX B: NETWORK TUNING PROTOCOL

For this work, we follow the tuning procedure detailed in
Ref. [9] with a small modification. Rather than tuning the
relative change in the response of the target, as shown in
Eq. (1) of Ref. [9], here we tune the value of the target pressure
difference directly. Given a network with NT target edges, our

goal is to satisfy the following set of constraints:

�pT,α

�pS
� �, α = 1, . . . , NT (B1)

where �pT,α is the pressure difference of target the αth target,
�pS is the pressure difference applied at the source edge
(�pS = 1 in our case), and � is the desired target pressure
difference. The objective function we attempt to minimize is
then

F[{ki j}] = 1

2

NT∑
α=1

r2
α�(−rα ), (B2)

where ki j are the edge conductances between nodes i and j,
and rα is the residual given by

rα = �pT,α

�pS
− �. (B3)

In addition, the pressure difference on a given edge is the
difference between the pressures of the two nodes connected
by that edge, with a sign that is arbitrary because the nodes
are not ordered. This means that the sign of the target pressure
difference before tuning can be negative. In such a case, some
amount of tuning is necessary even when � is zero.

Finally, we choose source and target edges such that they
do not share any nodes. This means that no node is utilized
more than once. Otherwise, we follow the rest of the tuning
protocol in Ref. [9] exactly.
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