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ABSTRACT
The plasticity of amorphous solids undergoing shear is characterized by quasi-localized rearrangements of particles. While many models of
plasticity exist, the precise relationship between the plastic dynamics and the structure of a particle’s local environment remains an open
question. Previously, machine learning was used to identify a structural predictor of rearrangements called “softness.” Although softness has
been shown to predict which particles will rearrange with high accuracy, the method can be difficult to implement in experiments where
data are limited and the combinations of descriptors it identifies are often difficult to interpret physically. Here, we address both of these
weaknesses, presenting two major improvements to the standard softness method. First, we present a natural representation of each particle’s
observed mobility, allowing for the use of statistical models that are both simpler and provide greater accuracy in limited datasets. Second,
we employ persistent homology as a systematic means of identifying simple, topologically informed, structural quantities that are easy to
interpret and measure experimentally. We test our methods on two-dimensional athermal packings of soft spheres under quasi-static shear.
We find that the same structural information that predicts small variations in the response is also predictive of where plastic events will
localize. We also find that an excellent accuracy is achieved in athermal sheared packings using simply a particle’s species and the number of
nearest neighbor contacts.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0035395

I. INTRODUCTION

Machine learning has proven effective in identifying a struc-
tural quantity, softness, which predicts plastic rearrangements in
solids.1–3 In crystals, defects in the crystalline order such as dislo-
cations and grain boundaries—around which rearrangements are
known to localize4,5—are typically characterized by high softness.3
In disordered solids, softness succeeds remarkably well at address-
ing the long-standing challenge of identifying a structural indica-
tor of a particle’s propensity to rearrange. In particular, in super-
cooled liquids, the probability that a particle will rearrange depends
approximately exponentially on the particle’s softness, spanning sev-
eral orders of magnitude.2 However, although softness is highly
predictive in a wide range of systems studied in both simula-
tions and experiments,1,2,6 it still suffers from some significant
drawbacks.

The first drawback is a practical one. The calculation of soft-
ness is significantly constrained by the need for training examples
of rearranging particles, which constitute a very small fraction of
the total number of particles in the system.2 This has the effect of
substantially increasing the number of independent configurations
needed, reducing the method’s practical use for analyzing limited
experimental data.

The second drawback is a scientific one. Although softness
yields insight into the underlying physics of glassy systems and can
be considered a quantification of the old idea of a cage,2 its meaning
in terms of the local structure can be difficult to interpret because
it is defined in terms of a large number of local parameters. This
diminishes the insight that it can provide for the development of a
structural theory of plasticity from first-principles.

To calculate softness, a support vector machine (SVM) is
trained to sort particles into one of the two classes based on their
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current local structure: particles that are likely to participate in a
rearrangement in the future (those with “high softness” environ-
ments) and particles that are not likely to participate in a rearrange-
ment (those with “highly negative softness” environments). To train
the classifier, examples of non-rearranging and rearranging parti-
cles (which we will refer to as “rearrangers” and “non-rearrangers,”
respectively) must first be identified by observing a series of config-
urations undergoing rearrangement events in either simulation or
experiment. The SVM then attempts to find a hyperplane that best
separates the two classes of particles within a high-dimensional space
of structural descriptors. These descriptors are derived from each
particle’s local pair correlation function. Softness is computed as the
signed distance from the hyperplane, with particles located far from
the hyperplane in the positive direction being softer, and, therefore,
more likely to rearrange, while particles located far from the hyper-
plane in the negative direction considered to be harder and less likely
to rearrange.

Here, we propose two refinements to the softness calcula-
tion, addressing both drawbacks of the previous approach. First,
we consider local variations in the displacement far from a plas-
tic event to define a dynamical quantity, which effectively char-
acterizes a particle’s susceptibility to rearrangements, or mobility.
Since we can calculate this quantity for each particle in a system,
we avoid the problem of having to choose examples of relatively
mobile and immobile particles, converting the softness problem
into one of regression rather than classification. This has the effect
of greatly increasing the amount of data available from a single
configuration and thereby improving performance when applying
this technique to experimental systems or simulations with limited
data.

Second, we use persistent homology, a form of topological
data analysis, to systematically define a set of simple local structural
parameters in a physically meaningful way, eliminating much of the
guesswork. We demonstrate how to combine persistent homology
with a machine-learning-based approach to identify a new version
of softness that captures correlations between the dynamics and
the local topological structure for each particle. We compare both
aspects of our new approach with current methods to compute soft-
ness and demonstrate that it is just as effective. We find that the
same structural information, which predicts local fluctuations in the
displacement field, is also predictive of rearrangements. Further-
more, we find that an excellent accuracy is achieved with very few
structural descriptors, in this case simply a particle’s species and the
number of nearest neighbors’ contacts.

This article is organized as follows: In Sec. II, we describe our
process for generating configurations of particles at the onset of
rearrangement. In Sec. III, we describe how particle dynamics are
characterized to define the original softness and introduce our new
measure of effective particle mobility. We explain how the choice of
characterization determines which type of statistical model is appro-
priate, which in turn affects the accuracy of the softness method
when data are limited. In Sec. IV, we apply persistent homology
to our configurations and interpret the results of the procedure.
Next, Sec. V shows how to find correlations between the dynami-
cal and structural characterizations we have developed and uses the
resulting insight to define a new set of structural descriptors. Finally,
Sec. VI describes the results of our analysis with further discussion
in Sec. VII.

II. ONSET OF PLASTIC REARRANGEMENTS
To analyze the relationship between the structure and dynam-

ics, which underlies plasticity, we generate an ensemble of configura-
tions of particles undergoing a plastic rearrangement. We first create
a collection of jammed packings of soft spheres and then athermally
shear each configuration until the onset of rearrangement.

Prior to shearing, we prepare each configuration using stan-
dard methods from the study of jamming.7 We start by placing
N = 214 particles at random positions in a square periodic box in
d = 2 dimensions. To reduce the probability of creating packings
with crystalline structures, we choose a 50% : 50% bidisperse mix-
ture of particles with radii of σ and 1.4σ, where σ is the radius of the
smaller particles. The size of the box is chosen to achieve an aver-
age packing fraction of ϕ = 0.95, well above the jamming density for
this ratio of radii. Particles interact according to a finite-ranged soft
pairwise (Hertzian) potential defined by

V(rij) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2
5

ϵ(1 − rij

Ri + Rj
)

5
2

, rij < Ri + Rj

0, rij ≥ Ri + Rj,
(1)

where Ri is the radius of particle i, rij is the distance between particles
i and j, and ϵ sets the energy scale. Next, we apply the FIRE algorithm
to find a local minimum of the energy for the configuration, i.e.,

FIG. 1. (a) A typical stress–strain curve observed when applying a simple shear
to a jammed packing in simulation. The elastic branches are broken up by sudden
plastic events where the shear stress suddenly drops. In this study, we focus on the
initial rearrangement at the onset of such events. (b) The lowest five normal mode
frequencies of the dynamical matrix near one of these plastic events, showing that
a single mode frequency goes to zero. The set of displacements described by this
critical mode describes the initial rearrangement for this plastic event.
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a mechanically stable state.8 We generated ∼400 independent con-
figurations in this way, each from a different set of random initial
conditions.

Next, we examine each of these configurations under athermal
quasistatic shear, broken up into a sequence of small strain steps. At
each step, we apply a simple shear strain of 10−5 by changing the
shape of the simulation cell and re-minimize the energy to find a
new stable state. Before energy minimization takes place, we make
an educated guess as to where the particles will move up to linear
order. During the first step, particles are displaced affinely according

FIG. 2. The onset of a rearrangement within a two-dimensional configuration of
jammed soft particles undergoing shear. (a) The non-affine deformation D2

min for
each particle in the configuration calculated from the critical mode u⃗, describing
the onset of the rearrangement. (Inset) Zoomed-in view of the neighborhood within
the red box located near the particle with the largest value of D2

min, defining the
source of the rearrangement. The arrows indicate each particle’s motion within the
critical mode. (b) The locally rescaled non-affine deformation Δ2

min calculated for
each particle and (inset) the corresponding zoomed-in view of the rearrangement
source.

to the applied global strain, while in subsequent steps, the particles
are instead moved along the non-affine displacement field produced
by the previous strain step. Since the elastic response of this model
is almost piece-wise linear, this produces a state closer to the new
energy minimum and reduces the time spent on minimization.

As the system is strained, the shear stress and energy rise; after a
sufficient amount of shear strain, the two drop suddenly, as shown in
Fig. 1. These stress drops correspond to plastic (irreversible) events
in which particles often change neighbors.9 When such an event is
detected, we back up to the configuration prior to the event and
approach it a second time with a smaller strain step size. This process
is repeated until the event is passed through with a strain step size
of 10−12. At this very small strain step, the main source of numer-
ical error stems from the minimization algorithm, rather than the
finite strain step. We note that similar algorithms have been used in
previous work.10,11

Our goal is to identify which particles are structurally predis-
posed to rearrange during one of these plastic events. However, these
events can often involve a sequence of many smaller rearrangements
as the movements of some particles induce the movements of oth-
ers, resulting in an avalanche of rearrangements.9 A particle with
a relatively hard structure may become softer during this sequence
of rearrangements; thus, the structure at the beginning of the event
should not be expected to strongly predict the motion toward the
end of the event.

Therefore, we specifically try to identify structures that corre-
late with the rearrangement that initiates each event, following ear-
lier work.12 At the onset of a plastic event, a configuration becomes
linearly unstable toward a single direction in the dN dimensional
space of particle coordinates.9 We find this direction by diagonaliz-
ing the Hessian (i.e., the matrix of second derivatives of the energy
or dynamical matrix) and identify the eigenvector whose eigenvalue
goes to zero at the onset of instability, as shown in Fig. 1. We denote
this “critical mode” u⃗, with the displacement of particle i denoted u⃗i.
An example of such a critical mode is shown in Fig. 2. During each
shear trajectory, we record the first 10 particle rearrangement events.
We utilize the first event in each trajectory for our analyses and the
remaining events to identify examples of particles that are unlikely
to rearrange in the future for the classification-based approach
(see Sec. III).

III. DYNAMICAL CHARACTERIZATION
AND SUPERVISED LEARNING STRATEGY

The softness method relies on measuring each particle’s mobil-
ity by observing configurations of particles undergoing rearrange-
ments in either simulated or experimental systems. To accomplish
this, the method requires a means to quantify the amount by which
each particle participates in a given rearrangement. This choice of
dynamical characterization determines the type of statistical model
that is most appropriate to identify correlations between the particle
dynamics and local structure. In this section, we describe the charac-
terization of particle dynamics used by the original softness method
and how it leads to a classification-based approach. We then show
how the original approach may be generalized to allow for a simpler
regression-based model, greatly improving its power when applied
to limited data. By choosing a more natural characterization, we are
better able to take advantage of available data.
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A. Classification via dynamical outliers
In order to define an observable proxy for particle mobility, we

start with the critical mode u⃗ describing the onset of a rearrange-
ment, as defined in Sec. III. Since rearrangements are characterized
by the relative motion within local neighborhoods of particles, we
use a measure of the local non-affine motion in each particle’s envi-
ronment, commonly referred to as D2

min.13 This ensures that particles
that move together as rigid clusters are assigned small measures
of motion, even if they display large displacements. We define this
quantity for particle i in the standard way,

D2
min(i) = min

F

⎧⎪⎪⎨⎪⎪⎩

1
∣Ni(ℓ)∣

∑
j∈Ni(ℓ)

(FΔx⃗ij − Δu⃗ij)2
⎫⎪⎪⎬⎪⎪⎭

, (2)

where F the deformation gradient matrix of size d × d calculated to
minimize D2

min(i). The sum iterates over all particles in the neigh-
borhood of particle i (excluding itself), represented by the set Ni(ℓ)
with size ∣Ni(ℓ)∣. The size of the neighborhood is set by a dis-
crete cutoff distance ℓ, which we calculate using the minimum path
length between pairs of particles in the Delaunay triangulation of the
configuration (typically equivalent to a Euclidean distance of 2–3
particles diameters; see Sec. V A for a comprehensive discussion).
Denoting the position of particle i as the d-dimensional vector x⃗i,
the vector Δx⃗ij = x⃗j − x⃗i is then the position of particle j relative to i.
Similarly, Δu⃗ij = u⃗j − u⃗i is the relative displacement between the two
particles calculated from the critical mode.

Figure 2(a) depicts D2
min for each particle in a configuration at

the onset of a rearrangement. The inset shows the local neighbor-
hood at the “source” of the rearrangement (defined as the particle
with the largest value of D2

min) with arrows depicting the critical
mode u⃗, indicating the initial particle movements. We expect u⃗ to
decay like r1−d, where r is the distance from the source of the event
and d is the dimension.14 This suggests a power law dependence of
r−d for the non-affine motion as measured by D2

min, which depends
on the difference in motion between adjacent particles and thus
scales like the strain.

Once D2
min has been calculated, the naive approach would be

to perform a simple linear regression to determine the correlation
between each particle’s observed D2

min and a measure of its local
structure. However, the power law dependence of D2

min poses a prac-
tical problem: It is system-size dependent and ranges over many
orders of magnitude for a given rearrangement [e.g., almost 10
orders of magnitude in the example depicted in Fig. 2(a)]. The result
is that any correlations between D2

min and any structural quanti-
ties of interest are weakened. Indeed, we find that a linear model
based on D2

min and the various structural quantities we consider
in this work only accounts for a small percentage of the observed
variance.

To avoid this issue, the original softness method converts the
problem into one of classification, defining two classes of parti-
cles: rearrangers, which will rearrange in the near future, and non-
rearrangers, which have not rearranged for a long time (or strain
window in this case). To train the classifier, examples of particles
from both classes are identified by imposing strict cutoff thresholds
on observed values of D2

min. In each configuration, examples of rear-
rangers are found by choosing particles such that D2

min is greater

than cutoff qr. Similarly, examples of non-rearrangers are chosen
by identifying particles with low observed D2

min within a relatively
long window of time into the future. In this work, we set an upper
threshold qnr on the maximum D2

min experienced by a particle within
a window of 10 rearrangement events into the future (including the
current event).

This strategy reduces noise by limiting training to dynamical
outliers, or particles in the tails of the distribution of D2

min, as it is
much easier to distinguish between particles in these two regimes.
The primary problem with this approach is that there is not always a
natural choice for the thresholds qr and qnr. As we will demonstrate,
the choice of these cutoffs can dramatically affect the resulting classi-
fication accuracy of the model. To maximize accuracy, these thresh-
olds must be taken to be very strict, greatly reducing the number
of particles that can be utilized from each individual configuration.
As a result, achieving adequate accuracy with such a strategy can
require a prohibitively large number of samples. While loosening
the strictness of the thresholds increases the number of samples, it
also introduces noise as some particles may have large values of D2

min
simply due to their proximity to the rearrangement, even though
structurally they are indistinguishable from non-rearranging parti-
cles. Similarly, particles with small values of D2

min may simply be
far away from the source of the rearrangement but still have local
structures with particularly low stability.

B. Regression via locally rescaled motion
To remedy these problems, we take note of the fact that pre-

vious studies have determined that a typical jammed packing can
have many soft spots, or local regions with particularly low energy
barriers to rearrangement, with the source of the rearrangement
contained within just one (or a small number) of them.15 Since a
rearrangement in a homogeneous system would consist of a local
plastic event surrounded by a decaying strain field described by the
Eshelby kernel,14 we hypothesize that the related critical mode will
consist of such a field interacting with the underlying structural soft-
ness field. The result of this interaction will manifest as small-scale
variations on top of the continuum response. In this view, soft spots
are not associated simply with particles with relatively large values
of D2

min, but rather with particles with large observed motion rela-
tive to particles within their local environment. Therefore, we would
like to normalize D2

min so that it is independent of position relative
to the source of the rearrangement but still captures particle level
variations in the response.

To accomplish this, we introduce a simple modification to
the D2

min field. For each particle within the ith particle’s neighbor-
hood including itself, we measure D2

min(i) and calculate the average
⟨D2

min⟩Ni(ℓ). We then rescale D2
min(i) by this average value to obtain

Δ2
min(i) = D2

min(i)/⟨D2
min⟩Ni(ℓ). (3)

For simplicity, we consider the same neighborhood of particles for
both the original calculation of D2

min and this locally rescaled ver-
sion, but in principle, each could be chosen separately. We choose
the discrete cutoff distance ℓ such that it is large enough to capture
local variations in the D2

min, but not too large as to lose informa-
tion about potential soft spots. We find that a distance of ℓ = 2 is
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as small as possible while still capturing local variations in the crit-
ical mode commensurate with known length scales of D2

min spatial
correlations.6

Figure 2(b) depicts this locally rescaled measure of the non-
affine deformation for the rearrangement in Fig. 2(a). We see that
Δ2

min still captures local fluctuations in the response but eliminates
the distance and angular dependencies without having to fit a func-
tional form or explicitly address finite-size effects. We posit that this
measurement of a particle’s participation in a rearrangement is a
proxy for a particle’s mobility. Since Δ2

min no longer varies over many
orders of magnitude with distance from the rearrangement source,
standard linear regression now becomes practical. This change of
training strategy allows us to avoid choosing cutoffs to identify train-
ing examples (rearrangers and non-rearrangers). Instead, we can
utilize all of the particles in a configuration. We will see that this
dramatically improves the predictive accuracy when data are limited.

IV. STRUCTURAL CHARACTERIZATION
OF LOCAL PARTICLE ENVIRONMENT

Now that we have defined a dynamical quantity that locally
quantifies each particle’s participation in a rearrangement, the next
step is to characterize each particle’s local structure. Typically, a
choice must be made as to which aspects of the local structure
to measure. The original softness method uses structural descrip-
tors derived from a particle’s local pair correlation function.1 These
structural descriptors were originally proposed by Behler and Par-
rinello as a means to parameterize potential energy surfaces for use
in density-functional theory.16 In effect, the Behler–Parrinello (BP)
descriptors form an arbitrary basis that provides an over-determined
representation of a local structure (see Appendix B 1 a). Because they
are not specialized for any particular system, the number of nec-
essary descriptors can be very large, even after many redundant or
non-informative features have been eliminated by the training pro-
cess. This means that the resulting form of softness, composed of a
linear combination of these parameters, can be difficult to interpret.

Rather than choosing an arbitrary basis of descriptors, here we
turn to persistent homology, a technique from topological data anal-
ysis, to systematically identify a natural set of descriptors. This pro-
cedure minimizes much of the guesswork, providing descriptors that
are both tailored to a system of interest and easier to interpret. In the
past, the persistence algorithm has been used to study various topo-
logical aspects of configurations of particles in two dimensions and
higher.17–19 In this section, we outline the procedure for applying
the persistence algorithm to jammed packings of particles. We then
quantify the statistical properties of the topological features within
such systems and explain their physical interpretations.

A. Persistent homology
Persistent homology is a technique that detects and charac-

terizes topological features contained within geometrically and/or
topologically structured data.20,21 In this case, we use it to character-
ize each two-dimensional configuration of jammed soft spheres at
the onset of rearrangement. For each particle i, we know its position
x⃗i and its interaction radius Ri. In general, the types of topologi-
cal features the persistence algorithm can detect include connected
components, loops, voids, and so on. While the first two types of
features are relevant in two dimensions, we primarily focus on loops

in this study (or one-dimensional cycles, which we refer to simply as
cycles from now on).

To perform the persistence algorithm on a configuration of
particles, we perform a filtration of its weighted Delaunay triangu-
lation.20 To apply this filtration, we start by calculating the weighted
Delaunay triangulation of the configuration of particles, using the
squared radius R2

i of each particle as its weight. Figure 3(a) depicts

FIG. 3. (a) Weighted Delaunay triangulation of a packing of particles consisting
of vertices at the center of each particle, edges between neighboring particles,
and triangles between triplets of mutually adjacent particles. Some edges in the
triangulation correspond to particle contacts, while others do not. (b) Initial config-
uration encountered during the filtration at αmin = −σ2. Particles with radii σ first
appear as points, while particles with larger radii begin as finite-sized disks. The
corresponding alpha complex, a subset of the Delaunay triangulation, consists of a
single point at the center of every particle. (c) Birth of the cycle consisting of the red
edges at αb = −0.014σ2, representing the overlaps between the disks highlighted
in blue. The current alpha complex consists of the vertices and edges shown as
black lines. (d) Death of the cycle from (c) at αd = −0.014σ2 when the green tri-
angle is placed in the triangulation, representing the mutual overlap of the disks at
its corners. The alpha complex has additional edges compared to (c), along with
triangles wherever three disks overlap (triangles not shown). (e) Resulting persis-
tence diagram quantifying all cycles encountered in the configuration. The cycle
that is born in (c) and dies in (d) is highlighted in red.
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a configuration and its associated weighted Delaunay triangulation.
This triangulation has the property that each contact between a pair
of particles corresponds to an edge in the triangulation (although the
converse is not always true). This ensures that it encodes the particle
contact topology and therefore the mathematical constraints of the
system. In two dimensions, this Delaunay triangulation is composed
of three different types of simplices: vertices, edges, and triangles
(in three dimensions, we would also have tetrahedra). The filtration
assigns an ordering to each of these elements from which we can
build up the triangulation piece by piece. The subsets of the triangu-
lation we observe at each step are called alpha complexes, providing
representations of the configuration at different length scales until
we achieve the full Delaunay triangulation.

To find the ordering of simplices, we place a disk (or d-
dimensional ball) of radius

ri(α) =
√

R2
i + α (4)

at the center of each particle i. Next, we use the control parameter α
to gradually increase the size of these disks. At the value α = 0, each
disk has the same radius as its corresponding particle in the con-
figuration, while for α < 0 (> 0), each disk is smaller (larger) than
its corresponding particle. Initially, we start with a value of α = −σ2

such that none of the disks overlap, where σ is the minimum inter-
action radius of all the particles. As shown in Fig. 3(b), particles
with radii of σ initially appear as points, while particles with larger
radii are finite disks. Each point or disk represents a separate con-
nected component corresponding to a single vertex in the Delaunay
triangulation.

At this point, the alpha complex consists of all the vertices, but
none of the edges nor triangles. As α increases, we consider the union
of the disks; if a pair of disks starts to overlap and there exists an edge
between the corresponding vertices in the full Delaunay triangula-
tion, we add the edge to the alpha complex. Similarly, at the instant
that a triplet of disks starts to overlap at a single point and there
exists a triangle composed of the associated vertices in the Delaunay
triangulation, we add the triangle to the alpha complex.

If enough edges have been added, a cycle of edges may appear
surrounding a hole in the union of disks. When this occurs, we say
that the cycle is “born” and record the value of α at that instance,
αb. Figure 3(c) shows the birth of a new cycle at αb = −0.014σ2

highlighted in red with the participating disks in blue. As α fur-
ther increases, the hole that the cycle surrounds can break up into
smaller holes as edges are added and shrink as triangles are placed
into the alpha complex. Eventually, when a hole is completely filled,
we say the corresponding cycle has “died” and again record the value
of α for this event, αd. Figure 3(d) shows the death of the red cycle
at αd = 0.47σ2. At this instance, the triangle highlighted in green
is placed into the alpha complex, plugging the hole that the cycle
surrounds.

The value αb for each cycle measures the length of the largest
edge comprising that cycle, while αd measures the overall scale of
the cycle. We continue increasing α until the disks fill all of space and
the Delaunay triangulation is complete. In this way, each cycle that
appears during the filtration is assigned a birth–death pair (αb, αd)
encoding its inherent length scales. We plot this birth–death pair on
a persistence diagram, as demonstrated in Fig. 3(e). The collection of

all birth–death pairs encodes the complete topological information
at all length scales contained within the configuration. For a more
detailed mathematical explanation of the persistence algorithm, we
refer the reader to Ref. 20. We generate weighted Delaunay trian-
gulations using CGAL.22 We also note that CGAL can be used to
compute α-values and the associated filtrations, although we used
our own implementation.

B. Topological structure of jammed packings
We use the persistence algorithm to analyze the topological

structure of each of our rearrangement configurations. For each con-
figuration, we sort cycles into different bins according to their birth
and death values and count the number of cycles in each bin. We
then average the bins across each configuration. Figure 4(a) depicts
this composite persistence diagram of one-dimensional cycles with
each bin represented by a pixel. To aid the eye, we have placed a
solid black vertical line at αb = 0, along with a black dashed diag-
onal line along αb = αd. We observe two distinct bands of features
in the persistence diagram: one located at negative αb, spanning a
range of αd, and the other that runs directly above the diagonal line
where αb = αd, moving closer to this line as αb increases. These two
bands meet in the lower left-hand corner at negative αb and small αd,
resulting in a highly concentrated set of peaks. The diagonal band is
composed of a set of sub-bands, which each ends on one of these
peaks.

All the characteristics of the persistence diagrams we have
noted correspond to different types of prominent features present in
the particle configurations—in this case, one-dimensional cycles. To
interpret the precise meanings of these features, we identify and clas-
sify each cycle according to both its size and composition. The size is
determined by the number of particles or, equivalently, the number
of edges in the underlying Delaunay triangulation. The composition
is determined by the types (radii) of the particles involved, along
with the types of the edges. In the original configuration (corre-
sponding to α = 0 in the filtration where each disk is the same radius
as its particle), an edge corresponds to two particles that either over-
lap or do not overlap, which we call contacts and gaps, respectively.
Cycles can be composed of any combination of contacts and gaps. If
a cycle is born with αb < 0, then its largest length edge corresponds
to a contact and the cycle must therefore be completely composed of
contacts. Conversely, if a cycle is born with αb > 0, its largest edge is
a gap, but it may also contain some contacts. Finally, if a cycle has
more than three edges, we can assess whether it contains any gaps in
its interior. In two dimensions, each cycle is the boundary of a two-
dimensional surface composed of triangles. An interior edge is one
contained in this surface, but not located on its boundary.

Since the persistence algorithm does not provide a unique
representation of the cycles it detects, we choose a particular rep-
resentation of each cycle when it is born. We explain our pro-
cedure for identifying these birth cycles in Appendix A 1. How-
ever, the exact choice we make does not affect the overall results.
Once we have associated each point in the persistence diagram
with a particular cycle, we find that specific types of cycles have
births/deaths in different regions of the persistence diagram. In
Figs. 4(b-i)–4(b-iv), we sort cycles according to size and compo-
sition in terms of contacts and gaps. The inset within each panel
is a representative example of the type of cycle observed in that
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FIG. 4. (a) Average persistence diagram calculated from configurations at the onset of rearranging. Each pixel represents the number of cycles observed with a particular
combination of αb and αd divided by the total number of configurations examined. The black vertical line highlights αb = 0, while the black dashed line highlights αb = αd .
(b) Decomposition of the persistence diagram into cycles of different sizes and edge types. The vertical band is composed of (b-i) cycles with more than three edges and
no interior gaps and (b-ii) cycles with more than three edges and at least one interior gap, while the diagonal band is composed of (b-iii) cycles with exactly three edges
and no gaps and (b-iv) cycles with three edges and at least one gap. (c) Decomposition of the diagonal band consisting of cycles with three edges according to constituent
particle species. The sub-bands are composed of triangular cycles with (c-i) three small particles, (c-ii) two small particles and one large particle, (c-iii) one small particle
and two large particles, and (c-iv) three large particles. The analytical predictions of the four sub-bands are shown as orange curves (see Appendix A 2). The examples of
each cycle type are shown in the insets, highlighted by the red edges and blue disks. The contacts are depicted as solid lines, while the gaps are depicted as dashed lines.

region of the persistence diagram. As shown in Figs. 4(b-i) and
4(b-ii), cycles with more than three edges are located through-
out the vertical band. Cycles that contain at least one gap in
their interior are located in the upper part, while those with-
out interior gaps concentrate in the lower part. Figure 4(b-iii)
shows that the lower part of the band also contains triangular cycles,
containing exactly three contacts. Since the vertical band is located at
αb < 0, all of these cycles are composed solely of contacts. Depicted
in Fig. 4(b-iv), the band running along the diagonal also contains tri-
angular cycles composed of exactly three edges, coinciding with and

extending out from the lower part of the vertical band. When αb > 0,
these triangular cycles will always contain one or more gaps.

The decomposition of the persistence diagram can be taken
one step further to understand the effects of particle size and posi-
tion on the triangular cycles. In Figs. 4(c-i)–4(c-iv), we have sorted
the triangular cycles into groups based on the combinations of
particle sizes. Again, the inset within each panel is a representa-
tive example of a triangular cycle in that region of the persistence
diagram. Since there are two possible particle radii, we observe four
different combinations of three particles: (c-i) three small particles,
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(c-ii) two small particles and one large particle, (c-iii) one small
particle and two large particles, and (c-iv) three large particles.

For each of these cases, we analytically calculate a birth–death
curve that approximates the sub-band, highlighted by the orange
curves. Starting with three particles arranged into a triangle with
three contacts, we calculate αb and αd as we continuously open up
one of the contacts into a gap. We explain this calculation in more
detail in Appendix A 2. As the gap opens up and a triangle becomes
more elongated and less regular, both αb and αd increase, while the
difference between them decreases. Eventually, the triangle elongates

so much that αb = αd and the curve ends at its intersection with the
diagonal line. Each of the different combinations of particles com-
prises a separate curve. In the cases with one large particle and two
small particles or one small particle and two large particles, there are
two places where the gap can be placed: between particles of the same
type or particles of differing types. This means we can calculate two
different curves for each of these cases. However, these curves are so
close together that it is difficult to distinguish between them within
the corresponding sub-bands. In addition, contacts in these cycles
can have varying amounts of overlap and sometimes cycles can have

FIG. 5. (a) Correlation between cycles detected by the persistence algorithm and the non-affine motion of the particles comprising each cycle. Each pixel is colored according
to the value of ⟨D2

min⟩○ averaged across all cycles in that bin. There is no significant correlation between the persistence diagram and ⟨D2
min⟩○ besides a small excess

of motion for cycles exactly at αb = 0. The black vertical line highlights αb = 0, while the black dashed line highlights αb = αd . (b) Correlation between cycles and their
locally rescaled motion ⟨Δ2

min⟩○ averaged across all cycles within each bin. There are significant correlations between regions of the persistence diagram and ⟨Δ2
min⟩○. (c)

Decomposition of the persistence diagram according to the number of edges and edge types and correlated with Δ2
min. Cycles with small values of Δ2

min (shown in red) tend
to consist of (c-i) more than three edges and contain no interior gaps or (c-iii) exactly three edges with no gaps. Cycles with large values of Δ2

min (shown in blue) tend to
consist of (c-ii) more than three edges and at least one interior gap or (c-iv) exactly three edges with at least one gap. The examples of each cycle type are shown in the
insets, highlighted by the red edges and blue disks. The contacts are depicted as solid lines, while the gaps are depicted as dashed lines.
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more than one gap. Both of these effects contribute to the widths of
the sub-bands.

In summary, calculating composite persistence diagrams for
our jammed configurations provides a rigorous statistical repre-
sentation of local topological structures. By identifying the cycles
corresponding to each point and then decomposing the persis-
tence diagrams accordingly, we can fully understand how different
types of cycles correspond to features we observe in the composite
persistence diagram for all cycles.

V. CONNECTING DYNAMICS AND STRUCTURE
Now that we have established quantitative descriptions of both

the particle’s dynamics during a rearrangement and its local struc-
ture, we search for correlations between the two. To do this, we color
each pixel in the composite persistence diagrams according to the
average amount of motion undergone by the cycles represented by
that pixel. For each cycle, we measure the value of either D2

min or Δ2
min

averaged across all particles in that cycle, which we denote ⟨D2
min⟩○

and ⟨Δ2
min⟩○, respectively. Next, we average each cycle-defined mea-

sure of dynamics for each pixel in the persistence diagrams across all
cycles present in that pixel.

Figure 5(a) shows the persistence diagram from Fig. 4(a) cor-
related with D2

min, the non-rescaled measure of non-affine defor-
mation. We find that ⟨D2

min⟩○ is almost perfectly uniform across
all regions of the persistence diagram, indicating no correlation
between the cycle type and D2

min. The only exception we observe
is a very narrow vertical band at αb = 0, which contains slightly
larger measures of motion. This indicates that particles that par-
ticipate more in rearrangements tend to contain contacts that have
such small numerical values of overlap that they are almost gaps.
However, this signal is very weak.

In contrast, Fig. 5(b) depicts the persistence diagram correlated
with Δ2

min, the locally rescaled measure of motion. Here, we observe
very strong correlations between the motion and cycle type; cycles
located in the lower left-hand corner are typically located in neigh-
borhoods with relatively low amounts of motion relative to their
surroundings, while cycles located in either of the two bands tend to
participate more strongly in rearrangements. This contrast is espe-
cially strong in the diagonal band with an almost step-like jump in
⟨Δ2

min⟩○ occurring across the αb = 0 line.
In Figs. 5(c-i)–5(c-iv), we correlate Δ2

min with the persistence
diagrams of the four classes of cycles. The insets depict examples of
the types of cycles represented in each panel. We see in Figs. 5(c-i)
and 5(c-iii) that cycles with more than three edges and no interior
gaps, along with triangles with no gaps, typically have low Δ2

min, col-
ored in red. On the other hand, Figs. 5(c-ii) and 5(c-iv) show that
cycles with more than three edges that contain interior gaps, along
with triangles that contain at least one gap, typically have high Δ2

min,
colored in blue. This correspondence between gaps and Δ2

min is also
present in the sub-bands comprising the full diagonal band. The sub-
band curves we show in Figs. 4(c-i)–4(c-iv) correspond to triangles
with exactly one gap. If a triangle has more than one gap, it will result
in a larger αd, moving the cycle upwards in the persistence diagram
away from the associated curve. We see in Fig. 5(b) that the regions
of persistence diagrams corresponding to triangles with more than

one gap are darker blue than those with one gap, indicating larger
values of Δ2

min.
From all of these observations, we posit that a particle’s par-

ticipation in a rearrangement relative to its local environment, as
measured by Δ2

min, is determined by the presence or absence of gaps
or, conversely, the number of contacts. The more gaps, or fewer
contacts, a particle shares with its nearest neighbors, the larger its
participation in a given rearrangement will be relative to its local
neighborhood.

A. Topologically informed structural descriptors
Based on these observations, we use the number of gaps and

contacts in a particle’s local environment to construct a set of local
structural descriptors. In order to allow for the possibility that a par-
ticle is affected by more than just its immediate nearest neighbor
structure, we allow structural descriptors to be defined at a range
of distances from a particle of interest. Since gaps and contacts are
defined in terms of the Delaunay triangulation, which captures a
configuration’s contact structure, we define all distances in terms
of this triangulation. We start by defining the distance djk as the
minimum path length in the triangulation between particles j and
k, counted in terms of the number of edges (e.g., nearest neighbors
are distance one, next-nearest neighbors are distance two, and so
on). Figure 6(a) shows an example of these distances for a neigh-
borhood around a specific particle shown in blue. This measure of
distance has the nice property that it is defined in a way that takes
into account the contact topology, along with differences in parti-
cle radii. We use this discrete distance in all aspects of our softness
procedure, including the cutoff distance ℓ used to calculate D2

min and
Δ2

min described previously. In those cases, we consider all particles to
be in the neighborhood of particle i if dij ≤ ℓ.

Next, we assign a measure of distance between particle i and
particular edge (j, k) defined in terms of its pair of vertices j and k as

di,(j,k) = dij + dik, (5)

FIG. 6. Discrete distances defined in terms of a configuration’s weighted Delaunay
triangulation. (a) Distance di,j of each particle j from the central particle i shown
in blue. The particle distances are taken as the minimum path length along the
edges of the triangulation between the two particles. (b) Distance di,( j,k) of each
edge (j, k) composed of particles j and k from the central particle i. The edge
distances are calculated from the sum of the distances of their respective vertices
from the particle of interest.
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the sum of the distances of particles j and k from i. As depicted in
Fig. 6(b), this definition of distance separates the edges in the tri-
angulation into “layers” at different distances. The edges that are
incident with particle i are assigned distance di,(j,k) = 1, while those
that are incident with two nearest neighbors of i are at distance
di,(j,k) = 2, and so on.

Using this definition of distance, we can simply count the num-
ber of gaps and contacts present in each layer of the Delaunay trian-
gulation. For particle i, we denote the number of gaps and contacts
located at a distance of di,(j,k) = m as gm

i and cm
i , respectively. We also

include the particle species pi, where pi = 0 if the radius Ri = σ and
pi = 1 otherwise. The result is a list of structural descriptors

xi = (pi, g1
i , c1

i , . . . , gℓmax
i , cℓmax

i ), (6)

where ℓmax is the maximum distance considered.
In Fig. 7, we plot the distributions of Δ2

min for particles with
different numbers of (a) gaps and (b) contacts in their nearest neigh-
bor environments, g1

i and c1
i , respectively. Already, we see that the

larger the number of gaps a particle has and the lower its number
of contacts, the larger value of Δ2

min it will have on average. To fully
characterize this correlation, we perform linear regression with the
structural descriptors xi acting as our independent variables and the
locally rescaled non-affine deformation Δ2

min acting as our depen-
dent variable. The result is a new definition of softness, composed

FIG. 7. Distributions of the locally rescaled non-affine deformation Δ2
min for (a-i)

small (Ri = σ) and (a-ii) large (Ri = 1.4σ) particles with different numbers of gaps
in the first layer of their local Delaunay triangulation g1

i . Similarly, the distributions
of Δ2

min for (b-i) small and (b-ii) large particles with different numbers of contacts in
their first layer c1

i . The full distributions including all particles in a panel are shown
as black dashed curves. The particles with more gaps or less contacts tend to
have larger values of Δ2

min on average.

of a linear combination of gaps and contacts at different discrete
distances,

Si = ∑
μ
wμxi

μ, (7)

where μ is an index for the components of xi in Eq. (6) and the
weights wμ are determined by the regression. In Sec. VI, we com-
pare this new formulation of softness with the previous version of
the method.

VI. RESULTS
We separately compare each aspect of our new method with the

previous version of softness. We test four different combinations of
dynamical characterization (D2

min or Δ2
min) and structural descriptors

(BP descriptors or gaps/contacts). The accuracy of each combination
of methods is reported in Table I. The results for jammed packings
in higher spatial dimensions and a variety of pressures are reported
in Ref. 23.

When performing classification, we choose cutoffs to iden-
tify examples of non-rearrangers and rearrangers, qnr and qr, as
strictly as possible, limiting ourselves to one particle per class in each
configuration. These two particles exhibit the largest and smallest
D2

min in each configuration. As we will demonstrate, this results in
the highest possible classification accuracies when we use the SVM
approach.

In all cases, we report a metric of accuracy appropriate to the
type of model used. For the classification models, we report the
binary classification accuracy, the percentage of particles that are
correctly classified as having positive or negative softness. For the
regression-based models, we report R2, the fraction of the variance
in the dynamics explained by the model.

To ensure that we do not overfit our models, we perform
cross-validation, training on one set of trajectories and comput-
ing test scores on another independent set of trajectories. When
cross-validation demonstrates no significant difference between the
training and testing accuracy, we report the mean and variance of
the accuracy obtained via bootstrapping. Otherwise, we report the
mean and variance of the cross-validated test accuracy. We have
also chosen our model hyperparameters via cross-validation in order
to maximize accuracy. We refer the reader to Appendix B 4 for
a complete description of our training procedures and choices of
hyperparameters.

For the classification-based models using D2
min, we see that the

structural descriptors based on gaps and contacts perform slightly
better than the BP descriptors. However, both sets of descriptors per-
form well with accuracies greater than 90%. We find similar results
for the regression-based schemes using Δ2

min, with gaps and contacts
performing slightly better, but both sets of descriptors resulting in
R2 values around 20%.

We note that the classification accuracies in Table I tend
to be much higher than the corresponding regression accura-
cies. This occurs because classifiers only attempt to sort particles
into binary classes and also only consider particles that could be
considered as outliers in the distribution of D2

min or Δ2
min. This

means that it is not appropriate to directly compare classifica-
tion and regression accuracies. Since a sample may contain many
“soft spots,” only one (or a few) of which will rearrange in a
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TABLE I. Comparison of four different combinations of statistical model, dynamical measure, and structural descriptors.

Dynamical Structural Global maximum percentile
Model type measure descriptors Accuracya (%) ⟨CDF(Simax)⟩ (%)

Classification D2
min Behler–Parrinello 91.5 ± 1.1 86.8 ± 0.8

Classification D2
min Gaps/contacts 96.7 ± 0.7 89.1 ± 0.7

Regression Δ2
min Behler–Parrinello 18.51 ± 0.02 88.7 ± 0.5

Regression Δ2
min Gaps/contacts 21.68 ± 0.03 86.6 ± 0.7

aThe accuracy metric is determined by the model type: The binary classification accuracy is used to measure classification success
and R2 is used to measure regression accuracy. To compare all softness schemes, we report the percentile of the softness value of
the particle with largest D2

min averaged over each configuration, ⟨CDF(Simax)⟩.

particular event, a good criterion to measure success is whether or
not the rearrangement always localizes around a soft particle. In
order to compare both classes of models with this criterion, we fol-
low the approach of Ref. 15. We identify the particle imax in each con-
figuration with the largest D2

min, the global maximum. This particle
can be considered, in effect, the “source” of the rearrangement. Next,
we record the percentile of the global maximum’s computed value of
softness Simax within the distribution of all particles in its respective
configuration. This is equivalent to evaluating the cumulative dis-
tribution function of softness at Simax , which we denote CDF(Simax).
If a model were to perfectly predict which particle is most likely to
rearrange within a configuration, then the global maximum in D2

min
would coincide with the maximum value of softness in that con-
figuration and we would obtain CDF(Simax) = 1. If the model failed
completely so that a random particle is chosen, then we would obtain
CDF(Simax) = 0.5 on average. We report ⟨CDF(Simax)⟩, the average
percentile of the global maxima in D2

min in each configuration for all
models in Table I. We find that all combinations of methods perform
comparably well, consistently placing the global maxima in D2

min in
at least the 86th percentile of softness.

One major benefit to using Δ2
min with a regression-based

scheme is the small amount of data needed to obtain high accuracy.
Figure 8 shows the accuracy of all four methods as a function of the
number of configurations used in training. In order to calculate error
bars via bootstrapping or cross-validation, the minimum number
of trajectories needed is two. In Fig. 8(a), we see that the classifica-
tion accuracy is dramatically affected by the amount of training data
for both sets of descriptors and does not begin to level off until one
has several hundred configurations. In contrast, we see in Fig. 8(b)
that the regression accuracy is already at its maximum when using
the minimum number of configurations, namely, 2. In fact, a single
rearrangement configuration would likely be sufficient to attain the
maximum regression accuracy. In Fig. 8(c), we plot ⟨CDF(Simax)⟩ for
the four different schemes. Again, we see that in the case of classifica-
tion, ⟨CDF(Simax)⟩ is strongly dependent on the amount of training
data, while in the case of regression, it is high even for two config-
urations. We note that while the variance of ⟨CDF(Simax)⟩ is large
for regression with a small number of trajectories, it decreases very
quickly with additional data and the mean score remains high.

Another benefit of using regression in concert with Δ2
min is that

training examples of specific particles are not needed. In Fig. 9, we

FIG. 8. Model accuracies as a function of the number of independent configu-
rations (one rearrangement configuration per trajectory) included in the training
set. (a) Classification accuracy using D2

min with gaps and contacts (blue) and BP
descriptors (red). (b) Regression accuracy R2 using Δ2

min with gaps and contacts
(green) and BP descriptors (magenta). (c) Average percentile of the particle with
the largest D2

min in each frame for the four models, colored according to (a) and
(b). The error bars correspond to the variance of the accuracies computed via
cross-validation or bootstrapping.
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FIG. 9. Accuracies as a function of quantile thresholds q = qr = qnr used to identify
training examples of rearranging or non-rearranging particles for classification. A
smaller value of q indicates a stricter threshold and smaller training set. (a) Clas-
sification accuracy for a classifier trained using gaps and contacts (blue) and BP
descriptors (red). (b) Average percentile of the particle with the largest D2

min within
each frame ⟨CDF(Simax

)⟩. The results for the classification models are shown
using solid lines, while the corresponding accuracies for the regression models
using Δ2

min are shown as dashed lines for gaps and contacts (green) and BP
descriptors (magenta). The error bars correspond to the variance of the accuracies
computed via cross-validation or bootstrapping. Similarly, the transparent bands
surrounding the dashed lines represent the variance for the regression models.

investigate the effect of the thresholds used to choose training exam-
ples for classification in combination with D2

min. We parameterize
these thresholds, qr and qnr, in terms of the percentiles in the D2

min
distribution within each configuration. For simplicity, we choose
to set these thresholds equal such that q = qr = qnr. In Fig. 9(a), we
report the classification accuracy as a function of q. We find that the
accuracy is greatly affected by the choice of q. In Fig. 9(b), we observe
that while ⟨CDF(Simax)⟩ is far less sensitive, it is still affected by the
choice of q. For reference, we have also provided the corresponding
regression accuracies using Δ2

min for both sets of descriptors, shown
as dashed horizontal lines. We see that ⟨CDF(Simax)⟩ converges to
these values at very strict thresholds.

Finally, we compare the dependence of the four schemes on
the number of included structural descriptors and the size of the
local environment that they encompass. For both sets of descrip-
tors, we sort each descriptor by its average Euclidean distance from
the particle of interest (see Appendix B 1 for details). Starting with
the complete set of descriptors, we iteratively remove the descrip-
tor at the largest distance, retraining our models at each step and
measuring the new accuracies. Figure 10 shows the training accura-
cies for our different models as a function of maximum descriptor
distance rmax. In Figs. 10(a) and 10(b), we plot the accuracies for

FIG. 10. Accuracies as a function of maximum Euclidean descriptor distance rmax

for included structural descriptors. The distance for each descriptor is averaged
over all instances of that feature and measured in units of σ, the minimum particle
radius. (a) Classification accuracies for the classification models using gaps and
contacts (blue) and BP descriptors (red). (b) Regression accuracies R2 for regres-
sion models using gaps and contacts (green) and BP descriptors (red). (c) Average
percentile of the particle with the largest D2

min within each frame ⟨CDF(Simax
)⟩ for

all four models. The transparent bands surrounding the lines indicate the variance
of training accuracies computed via cross-validation.

our classification and regression models, respectively, using both sets
of descriptors. In Fig. 10(c), we compare ⟨CDF(Simax)⟩ for all four
methods. We see that in all four cases, the accuracy rapidly increases
up to a distance of about 0.5 to 1.0 particle radii for both sets of
descriptors, with marginal improvements at larger separations. For
gaps and contacts, we find that only two descriptors are sufficient
for particle i: the particle species pi and the number of contacts of
the particle with its neighbors c1

i . In contrast, the BP descriptors
require at least around 20 descriptors to describe this environment.
In principle, a different choice of parameters in the definitions of the
descriptors could reduce this number, but it is not clear what these
parameters should be a priori. We conclude that gaps and contacts
provide a more concise description of the local structure.
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VII. DISCUSSION
In summary, we have introduced two major improvements to

the softness method. First, we have defined a locally rescaled ver-
sion of D2

min—represented as Δ2
min—which captures local variations

in the relative motion of particles during rearrangements, convert-
ing the softness problem from one of classification to regression.
The result is a more natural characterization that avoids the need
to define classes of particles that are more or less likely to rear-
range. This allows us to take advantage of all particles in a given
dataset, rather than just statistical outliers in observed mobility,
greatly reducing the number of configurations needed to compute
softness. In our case, this improvement leads to a several-hundred-
fold decrease in the amount of data needed to achieve an accuracy of
⟨CDF(Simax)⟩ = 0.86. This is clearly a major advantage when there
are limited data available for training, as is often the case in labora-
tory experiments.

Second, we have demonstrated a procedure for characterizing
the local structure of particle configurations. This procedure, based
on persistent homology, allows for the systematic development of
topologically informed structural descriptors that can be specialized
to a system of interest. This results in a more concise and inter-
pretable set of descriptors, which further decreases the amount of
data required in training (see Fig. 8). The simplicity of the result-
ing descriptors also allows features to be included at further dis-
tances from each particle, allowing for the possibility of capturing
structural correlations beyond each particle’s immediate proximity.
Furthermore, as opposed to the traditional BP descriptors, features
based on gaps and contacts do not contain any extra parameters
in their definitions, alleviating the need to fine-tune the descriptor
hyperparameters for each system of interest.

In the case of two-dimensional jammed packings of soft par-
ticles undergoing quasi-static shear, we find that Δ2

min correlates
strongly with a particle’s susceptibility to rearrangements, providing
an indirect measure of each particle’s mobility. We also find that the
nearest neighbor environment—a particle’s species and the number
of contacts with its neighbors—contains most of the local structural
information captured by softness in two dimensions.

For the physical problem of interest in this study, we evalu-
ate Δ2

min for critical vibrational modes whose frequency vanishes
at stress drops during athermal quasistatic shear. The success of
softness trained on Δ2

min for predicting plastic events in this con-
text suggests that local variations in the response to a rearrange-
ment are closely related to the particle mobility. This suggests that
Δ2

min could be applied to a variety of related physical systems as
a means of providing insight into particle dynamics. For exam-
ple, Δ2

min could be evaluated for any low-frequency vibrational
modes—not just the critical mode associated with an instability—as
a highly efficient way of extracting soft spots.12 It could even be
evaluated for the relative displacements between different config-
urations (for example, to the difference between two configura-
tions separated by a strain step) to provide a potentially more
useful measure of mobility than D2

min in systems with inhomo-
geneous loads. It could also be evaluated to study the response
of configurations with force dipoles applied in numerical simu-
lation or even experiments. Furthermore, one could use softness
trained on Δ2

min to predict rearrangements in athermal systems expe-
riencing other types of loading, such as uniform compression or

expansion, or in thermal systems that are either quiescent or under
load.

Although softness is highly useful as a structural predictor of
mobility, there are situations where such a predictor is not needed
and it may suffice to characterize the mobility. Elastoplasticity mod-
els are based on the premise that the coupling between the mobility
and elasticity is key to understanding the deformation and flow of
disordered solids. Characterization of the interplay between Δ2

min
and elasticity and how this varies from system to system could
lead to new elastoplasticity models based on relevant microscopic
information.

In this study, we used the persistence analysis as a systematic
means of identifying a set of local structural variables relevant to
dynamics in jammed packings. The analysis can readily be extended
to particles with more complicated sets of interactions. While it
is always possible to form an unweighted Delaunay triangulation
given just particle positions, a cell complex (i.e., a generalization of
a triangulation, see Ref. 20) that corresponds more closely to the
actual constraints or interactions in the system may provide cleaner
results. For example, one could imagine developing a generalization
of the alpha-shape filtration, and associated triangulation, for non-
spherical particles. In lieu of a rigorous mathematical formulation, it
would also be possible to pixelate the underlying space into a cubical
complex and then evaluate the total potential energy on the vertices
between pixels (or voxels).24,25 One could then perform a filtration
of the potential energy function on this cell complex. If the particles
have well-defined boundaries, a Euclidean distance transform on the
cubical complex could also suffice. In all cases, once an appropriate
filtration is chosen, the persistence algorithm will provide a complete
characterization of the topological structure.

We have shown that Δ2
min is a better dynamical quantity than

D2
min for determining softness from linear regression. For classifica-

tion, Δ2
min and D2

min are equally effective. However, we note that for
classification, one could use local minima and maxima in Δ2

min—or
even D2

min directly—as natural classes of non-rearrangers and rear-
rangers, respectively, instead of placing stringent thresholds on D2

min.
This uses data more efficiently so that fewer snapshots are needed,
although not as efficiently as linear regression.

Our result that gaps and contacts provide a concise and pre-
dictive characterization of local structure dovetails nicely with our
understanding of jammed systems, where the contact number is a
key quantity. Here, we find that for predicting mobility, it is not
only contacts that are important but also gaps in the Voronoi cell.
It would be interesting to determine whether gaps are themselves
important or are a signature of some other underlying aspects of the
local structure that is more closely related to the contacts.

While we find that we are able to achieve a high percentile of
softness for the particles that experience the most motion, we still do
not achieve a perfect 100% accuracy. The fact that we observe R2 val-
ues of only about 20% provides a strong indication that our method
still does not capture all of the relevant structural information. The
fact that we still achieve high accuracy for predicting the sources of
rearrangements implies that these particles tend to be outliers in the
distributions of local structures.

One important aspect of the local structure we neglect is the
contact stresses between particles. We note that although it is not
utilized, the persistence analysis should capture this information in
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principle. In fact, we observe a slight correlation of Δ2
min with αb

and αd in Figs. 5(c- i) and 5(c- iii) for both triangles with no gaps
and cycles with more than three edges that contain no interior gaps.
The farther a feature is from the vertical αb = 0 line, the smaller
its average value of Δ2

min seems to be. That is, particles in environ-
ments with larger contact overlaps, i.e., larger stress, seem to be less
mobile. In addition, the externally applied shear strain provides a
natural anisotropy to the system, which has been shown in other
studies to be important in fully capturing particles that are likely to
rearrange.15,26 However, we do not include any orientational infor-
mation in our descriptors and the persistence algorithm we have
demonstrated does not take orientation into account. It would be
useful to develop a way to either include this information in the per-
sistent homology framework or at least find a means to correlate it
with the features found by the standard algorithm. The addition of
information about stresses and orientation into our analysis would
help us to provide an upper limit on the value of local structural
information for the prediction of plastic rearrangements.
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APPENDIX A: PERSISTENCE DIAGRAMS
AND DECOMPOSITIONS

In this section, we provide any additional details necessary
for producing the persistence diagrams and decompositions in
Figs. 4 and 5.

1. Choosing representative cycles
In order to decompose the persistence diagrams in Figs. 4 and 5,

we sort cycles according to size (number of edges), edge types (gaps
vs overlaps), and particle species (small vs large radii). However, the
persistence algorithm does not provide a unique representation of
the cycles it detects. Instead, it only indicates when classes of homol-
ogous cycles appear and disappear during the course of the filtration.
This means that for any hole that appears in the union of disks, there
may be multiple cycles of edges in the triangulation that encircle that
hole, resulting in the same birth–death pair. Consequently, it is nec-
essary to choose a particular representation of each cycle in order to
classify them according to the type. For this study, the exact choice
we make does not affect the overall results, so we choose a represen-
tation of each cycle in a way that arises naturally from the persistence
algorithm.

To perform the persistence algorithm, one starts by construct-
ing the boundary matrix ∂, an operator that maps simplices (ver-
tices, edges, triangles, and so on) in a cell complex to their bound-
aries. Each of the rows and columns in ∂ represents a simplex, sorted
in order of their appearance during the filtration (for simplicity, we

will refer to the simplex represented by row or column i as simplex i).
The jth row of ∂ is defined such that the element in the ith row is one
if simplex i is a boundary of simplex j and zero otherwise. Perform-
ing the persistence algorithm in our case amounts to transforming ∂
to the Smith normal form via column addition and subtraction mod-
ulo 2. In the resulting reduced matrix R, each column has a different
pivot, the maximal row index of the nonzero column entries. If col-
umn j has nonzero entries and its pivot is row index i, this means a
feature was born upon the introduction of simplex i and died with
simplex j (see Ref. 20 for more detailed explanation).

The nonzero elements of column j in R are a linear combina-
tion of simplices, which form a cycle. Since each of these nonzero
elements has index less than or equal to the pivot, each of the cycle’s
constituent simplices was present at the time that feature was born.
Therefore, this cycle forms a representation of the topological fea-
ture at the time of birth, a birth cycle. Furthermore, the boundary of
simplex j forms a unique representation of the feature right before
its death, its death cycle. This means that column j is homologous to
the birth cycle we have described. In other words, at the time right
before death, both the birth and death cycles surround the same hole
in the triangulation.

Therefore, given a feature that is born with simplex i and dies
with simplex j, we choose the jth column of the reduced boundary
matrix R as a representative cycle. It is a cycle that both describe a
feature when it is born and is homologous to the cycle at the time of
death. Furthermore, it is easy to compute, as it can simply be read off
R when computing the persistence algorithm with no modification.

We acknowledge that various methods exist to identify repre-
sentative cycles. For example, one could calculate optimal cycles,
choosing the smallest representation of each cycle. However, this
method can be cumbersome, requiring the implementation of inte-
ger programming techniques.27 A basis of birth cycles can also be
found efficiently by finding the matrix V such that R = ∂V and read-
ing off the columns corresponding to simplices at which features are
born. In both cases, the resulting cycles are not always guaranteed to
be homologous to a feature at the time of death (or even birth for
optimal cycles). Our method of simply reading off the columns of R
does not suffer from any of these drawbacks.

2. Triangular cycle persistence curves
In this section, we derive the analytic forms of the persistence

curves for the four type of triangles shown in Figs. 4(c-i)–4(c-iv).
First, we introduce a general formalism for calculating α-values for
simplices embedded in d-dimensional space. Next, we derive the
solutions for the birth and death of triangular cycles with a single
gap as a function of the size of the gap.

a. Calculating α-values
Suppose we have a simplex consisting of n points in d-

dimensions (n ≤ d + 1) with positions v⃗i where i = 1, . . . , n with each
point assigned a weight wi. In the context of soft interacting spheres,
we can write each weight as

wi = R2
i + α, (A1)

where Ri is the interaction radius of particle i and α is a scale factor
used to control the radii of the balls when performing the filtration
of the weighted Delaunay triangulation.
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Next, we define the weighted squared distance, or power, of
point x⃗ from v⃗i as

πi(x⃗) = ∥x⃗ − v⃗i∥2 −wi. (A2)

Note that πi(x⃗) = 0 is the equation of a sphere centered at v⃗i with
radius

√
wi. The point x⃗ is said to be orthogonal to v⃗i if the power

between the two points is zero. We define a power sphere of a set of
points as the d-dimensional sphere centered at x⃗ with x⃗ orthogonal
to each point.

During a filtration on a Delaunay triangulation, the value of α at
which a simplex comes into existence, i.e., at which its balls all come
into contact, is equivalent to that of the power sphere of its vertices.
The position of the power sphere is then the point at which each ball
comes into contact. Therefore, our goal is to find a position a⃗ and a
scale factor α, which define a power sphere for our n points. In the
case where all points are equally weighted, this problem is equivalent
to calculating the radius and position of a circumscribing d-sphere.
If n = d + 1, the radius is unique, but if n < d + 1, we will choose the
unique sphere with minimum radius.

First, for each point, we write down its orthogonality condition,

πi(a⃗, α) = ∥a⃗ − v⃗i∥2 − R2
i − α = 0. (A3)

Expanding the square, we obtain

∥a⃗∥2 − 2v⃗i ⋅ a⃗ + ∥v⃗i∥2 = R2
i + α. (A4)

We note that this is a nonlinear equation for a⃗. To linearize, we
define

q = α − ∥a⃗∥2, (A5)

giving us

2v⃗i ⋅ a⃗ + q = ∥v⃗i∥2 − R2
i , (A6)

which is a set of n linear equations of d + 1 unknowns, a⃗ and q.
In the general case, we need an additional n − (d + 1) con-

straint to determine a unique solution. If we choose the minimum
radius circumsphere, then its center will be coplanar with our n
points. Thus, we write the center of the sphere as a parametric
function of the points,

a⃗ = v⃗1 +
n

∑
i=2

si(v⃗i − v⃗1), (A7)

where we have introduced an additional n − 1 free parameter si,
i = 2, . . . , n. We now have a total of d + 1 + n − 1 = d + n free param-
eters (a⃗,{si}, q). We also have an additional d equation giving us a
total of d + n, which means we have enough information to solve for
the circumscribing power sphere. We then solve for a⃗ and q using
the system of linear equations represented by Eqs. (A6) and (A7) and
obtain the scale factor using Eq. (A5). We note that if n = d + 1, as
is the case for a triangle in two dimensions or a tetrahedron in three
dimensions, then we can omit Eq. (A7). The equations derived here

apply in dimensions d ≥ 1 with n ≥ 2 and can be used to construct
a filtration on a weighted Delaunay triangulation. For details of how
to use α-values to construct this filtration, see Refs. 28 and 29.

b. Triangular cycles (d = 2,n = 3)
Next, we use the formulation above to derive the values of α

at which a cycle composed of three edges will be born, αb, and die,
αd, during a filtration. Suppose we have n = 3 particles in dimension
d = 2 with radii R1, R2, and R3 and positions v⃗1, v⃗2, and v⃗3, recep-
tively. Since only the positions of the particles are relative to one
another matter, without loss of generality, we write the particle
positions as

v⃗1 = (0, 0),
v⃗2 = (r12, 0),

v⃗3 = (r13 cos θ, r13 sin θ),
(A8)

where rij is the Euclidian distance between particles i and j and θ is
the angle of the triangle at the corner defined by particle 1 such that

cos θ = r2
12 + r2

13 − r2
23

2r12r13
,

sin θ =

¿
ÁÁÁÀ1 − ( r2

12 + r2
13 − r2

23
2r12r13

)
2

.

(A9)

We wish to calculate αb and αd as a function of the triangle shape
as one of the sides opens up into a gap. Initially, when all three
particles are in contact, we assume each pair of particles i and j
overlaps by amount δij > 0, which can depend on particle species
(see Appendix A 2 c for more details). We place the gap between
particles 2 and 3, parameterized by a parameter ε such that at a
minimum value of ε = 0 all particles overlap by δij. All together, we
parameterize the pairwise distances between particles as

r12 = R1 + R2 − δ12,
r13 = R1 + R3 − δ13,

r23 = R2 + R3 − δ23 + ε.
(A10)

Figure 11 depicts a schematic of such a triangle.
From here, we calculate αb and αd as a function of the gap

parameter ε. First, to derive the birth of the triangle, we calculate
α for each edge in the triangle (n = 2). We use Eqs. (A6) and (A7)
along with Eq. (A5) to solve for αij for an edge between particles i
and j, resulting in

αij = −R2
i +

1
4r2

ij

[r2
ij + R2

i − R2
j ]

2
. (A11)

This equation can be shown to be symmetric in i and j. The triangle
will be born when all three possible pairs of particles start to overlap.
Consequently, we take the maximum value αij out of all three pairs,

αb = max(α12, α13, α23). (A12)
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FIG. 11. Schematic of the triangular cycle used to derive αb and αd as a function
of gap size.

Next, we derive the value of α at which the cycle defined by the
triangle dies during the filtration. For a triangle in two dimensions,
n = d + 1 and Eqs. (A6) and (A5) are sufficient to solve for α, with
the result

αd(ε) = − R2
1 +

1
4r2

12

[r2
12 + R2

1 − R2
2]

2

+ ( 1
2r13 sin θ

[r2
13 + R2

1 − R2
3]

− 1
2r12 tan θ

[r2
12 + R2

1 − R2
2])

2
. (A13)

The persistence curve is defined parametrically as a function of ε by
following the path of the point [αb(ε), αd(ε)] for a particular com-
bination of particle sizes. The gap parameter ε starts at a value of
εmin = 0. As ε increases and a triangle is stretched out, eventually,
the difference between the birth and death α-values of the triangle
will approach one another. If there is a point at which they coincide,
then the maximum valid value of the gap parameter, εmax, will be the
solution to the following equation:

αb(εmax) = αd(εmax). (A14)

If a solution to this equation does not exist, then εmax will be the
point at which they are closest together defined by

εmax = arg min
ε
[αd(ε) − αb(ε)]. (A15)

This derivation can easily be extended to higher-dimensional
simplices, such as tetrahedra, and also to higher embedding dimen-
sions. In addition, one could choose different values of the initial
overlap between particles or could explore the area swept out in the
persistence diagrams by adding more than one gap to a simplex.

c. Estimating contact overlap
In Appendix A 2 b, we introduced the contact overlap δij for a

pair of particles i and j. In general, the average value of this overlap
will depend on the details of the interaction between the particles.
Here, we choose to estimate this parameter by relating it to the
contact forces between particles. We start by calculating the force
between particles i and j by taking the derivative of the potential in
Eq. (1) with respect to the interaction distance (we have dropped the
Heaviside function),

f (rij) = −
ϵ

(Ri + Rj)
(1 − rij

Ri + Rj
)

3
2

. (A16)

Next, plugging in the relation between the particle distance and
contact overlap, rij = Ri + Rj − δij, and solving for δij, we obtain

δij = (−
f
ϵ
)

2
3

(Ri + Rj)
5
3 . (A17)

This relationship holds for any combination of particle sizes with
only one parameter that must be specific f /ϵ. We estimate this
parameter from our configurations by calculating the average force
between particles that are in contact. We measure this quantity to be
∼ f /ϵ ≈ −0.0093.

APPENDIX B: SOFTNESS CALCULATION DETAILS
1. Structural descriptors
a. Behler –Parrinello descriptors

The Behler–Parrinello structural descriptors16 provide a
parameterization of each particle’s local structure. For particle i, we
define the radial descriptors as

GX
Y(i; μ) = ∑

j
e−(rij−μ)2/L2

, (B1)

where j sums over all particles, rij is the distance between particles
i and j, X and Y indicate particle species, and μ and L are con-
stants. For a pair of particles of species X and Y with combined radii
σtot = RX + RY , we use values of μ ranging from 0.8σtot to 2.0σtot
in steps of 0.05σtot with L = 0.05σtot. The angular descriptors are
defined as

ΨX
YZ(i; ξ, λ, ζ) = ∑

jk
e−(r

2
ij+r2

ik+r2
jk)/ξ2

(1 + λ cos θijk)
ζ , (B2)

where ξ, λ, and ζ are constants and θijk is the angle at the corner i
of the triangle defined by particles i, j, and k. We use the same set of
values for the four parameters as Ref. 1. Combining all parameters,
we construct a vector x⃗ of descriptors in a similar manner to the gaps
and contacts explained in the main text.

To calculate an representative average distance of each descrip-
tor from the central particle i, we treat each descriptor as a type
of integration kernel, averaging the distance rij over all N particles
under consideration. The average distance of the radial descriptors
for a particular value of μ is given by
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⟨r⟩G(μ) =
1
N∑i,j

rije−(rij−μ)2/L2

, (B3)

while the average distance of an angular descriptor for ξ, λ, and ζ is
similarly

⟨r⟩Ψ(ξ,λ,ζ) =
1
N∑ijk

1
2
(rij + rik)e−(r

2
ij+r2

ik+r2
jk)/ξ2

(1 + λ cos θijk)
ζ , (B4)

where we have averaged over rij and rik to maintain the symmetry.

b. Gaps and contacts
The definition of the gap and contact descriptors is given in the

main text. To calculate the average distance of each descriptor, we
first calculate the Euclidean distance of each edge from each particle
in the Delaunay triangulation of our configurations. The position of
an edge is taken as the midpoint between its defining pair of parti-
cles. We then average this distance separately for gaps and contacts
at each discrete triangulation distance di,(j,k), as defined in Eq. (5).

2. Classification
a. Training set construction

To construct our training set for classification, we first calcu-
late D2

min for each configuration and sort the particles in increasing
order. Next, we convert this ordering to the quantile of each parti-
cle i within that configuration, denoted qi, which ranges from 0 to
1. Examples of soft particles are then chosen as particles where qi is
greater than qr, the upper quantile threshold.

To select hard particles, we use a slightly different approach. For
each particle in a particular rearrangement configuration, we record
the maximum value of D2

min experienced by that particle within a
window of 10 future rearrangements (including the current rear-
rangement). Next, we again convert this quantity to a quantile repre-
sentation q′i and choose all particles with q′i less than qnr as examples
of hard particles. In this work, we always choose qr = qnr.

b. Model
To perform classification, we utilize a support vector machine

(SVM). In this framework, each particle i has a label yi where yi = −1
for soft particles and yi = 1 for hard particles, along with a vector of
features x⃗i, which may be BP descriptors or our descriptors based on
gaps and contacts. We define N to be the number of particles used in
training. Training the classifier then equates to solving the following
optimization problem for the vector of weights w⃗, intercept b, and
slack variables ζ i:

min
w⃗,b,⃗ζ

1
2
∥w⃗∥2

2 + C
N

∑
i=1

ζi

subject to yi(w⃗ ⋅ x⃗i + b) ≥ 1 − ζi,
ζi ≥ 0, i = 1, . . . , N.

(B5)

The hyperparameter C controls regularization. This formulation
equates to finding a hyperplane with normal vector w⃗, which best
separates the two classes of particles in the space of features. We

then calculate the softness Si for each particle as a weighted sum of
features,

Si = w⃗ ⋅ x⃗i. (B6)

3. Regression
The formulation for regression we use is standard ridge regres-

sion. For each particle in the training set, we have an independent
value yi given by Δ2

min(i) along with a vector of features x⃗i, which
may be BP descriptors or our descriptors based on gaps and contacts.
Defining N as the number of particles used in training, we perform
the following optimization problem for the vector of weights w⃗ and
intercept b:

min
w⃗,b

N

∑
i=1
(w⃗ ⋅ x⃗i + b − yi)2 + α∥w⃗∥2. (B7)

The hyperparameter α controls regularization. We then calculate the
softness Si for each particle as a weighted sum of features,

Si = w⃗ ⋅ x⃗i. (B8)

4. Machine learning protocol
We perform most of our machine learning tasks using the

scikit-learn Python package.30 Our learning protocol consists of the
following three steps:

1. Rescale all structural descriptors to zero mean and unit
variance.

2. Determine optimal hyperparameter values using cross-
validation.

3. Fit the model and use cross-validation or bootstrapping to
calculate the mean and standard deviation of the test accuracy.

We elaborate on these steps in Appendixes B 4 a–B 4 d.

a. Descriptor rescaling
Before training either of our models, we independently stan-

dardize each structural descriptor. To standardize a descriptor, we
subtract its observed median value and divide the descriptor by the
interquartile range (IQR), the difference between the 25th and 75th
percentiles. We determine the median and IQR only considering
data in the training set within a particular cross-validation or boot-
strapping set so as to avoid overfitting. We use the median and IQR
to standardize so as to reduce the potential influence of outliers.

b. Cross-validation
To avoid overfitting, we perform repeated two-fold cross-

validation in which we randomly sort our trajectories into two sets
of configurations, a training set and a test set, both of equal size.
We then fit our model using the training set data and evaluate accu-
racy on the test set. We repeat this process 32 times and measure the
mean and variance of the resulting accuracies.

c. Hyperparameter search
For each of the two model types, we optimize one hyperparam-

eter: C for classification or α for regression. To determine the best
value for a hyperparameter, we scan through a range of values spaced
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on a log-scale and calculate a cross-validated train and test accura-
cies at each value. We then choose the parameter that results in the
largest test accuracy. Figure 12 shows the range of values scanned
for the primary models reported in the main text. For regression,
we chose α = 103 when using gaps and contacts and α = 10−5 when
using BP descriptors. For classification, we find that the choice of q
does not have a significant effect on this optimal value. In Figs. 12(a)
and 12(b), we have shown results for q = 10−4.5, corresponding to
one particle of each class per configuration. For this model type,
we chose C = 10−2 for both types of descriptors. In principle, the
cross-validation could also be performed for the discrete radius of
the neighborhood used to calculate D2

min and separately the discrete
neighborhood radius used to rescale D2

min to calculate Δ2
min. In addi-

tion, there are many choices for the hyperparameters that are used
to define the BP descriptors.

d. Computing model accuracy
After performing our hyperparameter search, we take note of

whether there is a significant difference between the training and test
accuracies. If there is a significant difference for a particular model,
we use cross-validation when we later evaluate the success of that
model, reporting the relevant accuracy and ⟨CDF(Simax)⟩ values as
measured on the test set. If there is no significant difference, then
we perform bootstrapping to evaluate success, as it requires signif-
icantly less computational power. When performing bootstrapping,
we randomly sample configurations with replacement. We then fit

FIG. 12. Search for optimal hyperparameters the four different models. In all cases,
we show the training and test accuracies (solid and dashed lines, respectively)
relevant to the model type. The classification accuracy is shown as a function of
the regularization parameter C for (a) descriptors based on gaps and contacts and
(b) BP descriptors. Similarly, the regression accuracy is shown as a function of the
regularization parameter α for (a) gaps and contacts and (b) BP descriptors.

the model to this resampled dataset and evaluate the accuracy and
⟨CDF(Simax)⟩ on the same dataset. In both cases, we always resam-
ple our dataset 32 times. In Figs. 12(a) and 12(b), we see that for
classification, the test accuracy is generally less than the training
accuracy. This means that we always use cross-validation to evalu-
ate success for classification-based schemes. In contrast, we see in
Figs. 12(c) and 12(d) that the two accuracies do not differ signif-
icantly for regression. Therefore, we use bootstrapping to evaluate
success when performing regression.

DATA AVAILABILITY
The data that support the findings of this study are available

from the corresponding author upon reasonable request.
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